Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

DNA mismatch repair and adjuvant chemotherapy in sporadic colon cancer

Abstract

Defective DNA mismatch repair (MMR) occurs in approximately 15% of sporadic colorectal cancers (CRCs). Multiple retrospective studies have shown that patients with MMR-deficient CRCs have a more favorable stage-adjusted prognosis compared with those who have MMR-proficient tumors. Evidence also indicates that patients with MMR-deficient colon cancers do not benefit from treatment with adjuvant 5-fluorouracil chemotherapy. Furthermore, recent studies, including a pooled analysis, have validated the prognostic and predictive impact of MMR status in patients with stage II and III colon cancer who were treated in adjuvant chemotherapy trials. Given these data, it can be recommended that MMR status be determined and used to inform clinical decision-making for adjuvant chemotherapy in patients with stage II colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct molecular pathways for the development of defective DNA MMR and MSI-H in CRCs.

Similar content being viewed by others

References

  1. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  Google Scholar 

  2. Poynter, J. N. et al. Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomarkers Prev. 17, 3208–3215 (2008).

    Article  CAS  Google Scholar 

  3. Piñol, V. et al. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293, 1986–1994 (2005).

    Article  Google Scholar 

  4. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    Article  CAS  Google Scholar 

  5. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science (New York, NY) 260, 816–819 (1993).

    Article  CAS  Google Scholar 

  6. Jass, J. R. et al. Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42, 673–679 (1998).

    Article  CAS  Google Scholar 

  7. Lindor, N. M. et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J. Clin. Oncol. 20, 1043–1048 (2002).

    Article  CAS  Google Scholar 

  8. Boland, C. R. et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  9. Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 (1998).

    Article  CAS  Google Scholar 

  10. Sinicrope, F. A. et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131, 729–737 (2006).

    Article  CAS  Google Scholar 

  11. Gafà, R. et al. Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability. Cancer 89, 2025–2037 (2000).

    Article  Google Scholar 

  12. Halling, K. C. et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J. Natl Cancer Inst. 91, 1295–1303 (1999).

    Article  CAS  Google Scholar 

  13. Lanza, G. et al. Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J. Clin. Oncol. 24, 2359–2367 (2006).

    Article  CAS  Google Scholar 

  14. Samowitz, W. S. et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev. 10, 917–923 (2001).

    CAS  PubMed  Google Scholar 

  15. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    Article  CAS  Google Scholar 

  16. Kerr, D. J. et al. A quantitative multigene RT-PCR assay for prediction of recurrence in stage II colon cancer: selection of the genes in four large studies and results of the independent, prospectively designed QUASAR validation study [abstract]. J. Clin. Oncol. 27 (Suppl. 15S), a4000 (2009).

    Google Scholar 

  17. Lamberti, C. et al. Microsatellite instability did not predict individual survival of unselected patients with colorectal cancer. Int. J. Colorectal Dis. 22, 145–152 (2007).

    Article  CAS  Google Scholar 

  18. Kim, G. P. et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol. 25, 767–772 (2007).

    Article  CAS  Google Scholar 

  19. Benatti, P. et al. Microsatellite instability and colorectal cancer prognosis. Clin. Cancer Res. 11, 8332–8340 (2005).

    Article  CAS  Google Scholar 

  20. Ribic, C. M. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247–257 (2003).

    Article  CAS  Google Scholar 

  21. Jover, R. et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer 45, 365–373 (2009).

    Article  CAS  Google Scholar 

  22. Carethers, J. M. et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117, 123–131 (1999).

    Article  CAS  Google Scholar 

  23. Arnold, C. N., Goel, A. & Boland, C. R. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer 106, 66–73 (2003).

    Article  CAS  Google Scholar 

  24. Hemminki, A., Mecklin, J. P., Jarvinen, H., Aaltonen, L. A. & Joensuu, H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119, 921–928 (2000).

    Article  CAS  Google Scholar 

  25. Elsaleh, H. et al. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 3 55, 1745–1750 (2000).

    Article  Google Scholar 

  26. Sargent, D. J. et al. Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): A pooled molecular reanalysis of randomized chemotherapy trials [abstract]. J. Clin. Oncol. 26 (Suppl.), a4008 (2008).

    Article  Google Scholar 

  27. Bertagnolli, M. M. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27, 1814–1821 (2009).

    Article  CAS  Google Scholar 

  28. Tejpar, S. B. et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial) [abstract]. J. Clin. Oncol. 27 (Suppl. 15S), a4001 (2009).

    Google Scholar 

  29. Saltz, L. B. et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J. Clin. Oncol. 25, 3456–3461 (2007).

    Article  CAS  Google Scholar 

  30. de Gramont, A. et al. Oxaliplatin/5FU/LV in adjuvant colon cancer: Updated efficacy results of the MOSAIC trial, including survival, with a medial follow-up of six years. J. Clin. Oncol. 25 (Suppl. 18S), a4007 (2007).

    Google Scholar 

  31. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    Article  CAS  Google Scholar 

  32. Sinicrope, F. A. et al. Model-based prediction of defective DNA mismatch repair using clinicopathological variables in sporadic colon cancer patients. Cancer (in press).

  33. Barrow, E., McMahon, R., Evans, D. G., Levine, E. & Hill, J. Cost analysis of biomarker testing for mismatch repair deficiency in node-positive colorectal cancer. Br. J. Surg. 95, 868–875 (2008).

    Article  CAS  Google Scholar 

  34. Deng, G. et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res. 10, 191–195 (2004).

    Article  CAS  Google Scholar 

  35. Domingo, E. et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J. Med. Genet. 41, 664–668 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinicrope, F. DNA mismatch repair and adjuvant chemotherapy in sporadic colon cancer. Nat Rev Clin Oncol 7, 174–177 (2010). https://doi.org/10.1038/nrclinonc.2009.235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing