Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy

Abstract

Despite their inherent selectivity, targeted therapies such as tyrosine kinase inhibitors (TKIs) can cause unusual adverse effects. Sunitinib and sorafenib are multitargeted TKIs that have been demonstrated to induce hypothyroidism and thyroid dysfunction. Retrospective studies indicate that sunitinib can induce hypothyroidism in 53–85% of patients, and in prospective studies this complication has been reported in 36–71% of patients. Sorafenib has been reported to be responsible for hypothyroidism in 18% of patients with metastatic renal-cell carcinoma. Furthermore, imatinib and sunitinib seem to increase the requirement of levothyroxine in hypothyroid patients. The management of thyroid dysfunction and possible related symptoms, such as fatigue, represents a challenge to oncologists. We propose a diagnostic and therapeutic algorithm for the management of TKI-related hypothyroidism. Prospective trials are needed to define the incidence of overt and subclinical hypothyroidism and thyroid dysfunction during therapy with sunitinib, sorafenib and potentially other TKIs. The safety and efficacy, and optimal dosing and timing of starting replacement therapy in patients affected by TKI-related hypothyroidism need accurate appraisal and should be evaluated prospectively in appropriately designed trials.

Key Points

  • The reported incidence of sunitinib-induced hypothyroidism is 53–85% and 36–46% in retrospective or prospective studies, respectively, and 18% in patients treated with sorafenib

  • Mechanisms of hypothyroidism induced by TKIs include drug-induced atrophy of the thyroid through inhibition of its vascularization, drug-induced thyroiditis, reduced synthesis of thyroid hormones, progressive depletion of the thyroid's functional reserve and inhibition of the thyroidal iodine uptake

  • Whether TKI-related hypothyroidism is mediated by inhibition of the VEGF pathway or of other molecular pathways is unknown

  • In patients treated with sunitinib or sorafenib, routine thyroid function testing at baseline, and measurement of serum thyroid stimulating hormone level on day 1 at the start of every new treatment cycle is recommended

  • Levothyroxine is the standard treatment for overt hypothyroidism and is recommended in some patients with subclinical hypothyroidism; overt or subclinical hypothyroidism per se does not justify the withdrawal of TKI therapy

  • Thyroid function test should be included in routine toxicity assessment of TKIs under clinical evaluation; however, the clinical relevance of early diagnosis of hypothyroidism in patients with TKIs is still controversial

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart to show the proposed decision-making sequence for the management of hypothyroidism in patients receiving tyrosine kinase inhibitors.

Similar content being viewed by others

References

  1. Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat. Rev. Cancer 6, 806–812 (2006).

    Article  Google Scholar 

  2. Ross, D. S. Serum thyroid-stimulating hormone measurement for assessment of thyroid function and disease. Endocrinol. Metab. Clin. North. Am. 30, 245–264 (2001).

    Article  CAS  Google Scholar 

  3. Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. (Oxf.) 43, 55–68 (1995).

    Article  CAS  Google Scholar 

  4. Roberts, C. G. & Ladenson, P. W. Hypothyroidism. Lancet 363, 793–803 (2004).

    Article  CAS  Google Scholar 

  5. Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. (Oxf.) 34, 77–83 (1991).

    Article  CAS  Google Scholar 

  6. Robuschi, G., Safran, M., Braverman, L. E., Gnudi, A. & Roti, E. Hypothyroidism in the elderly. Endocr. Rev. 8, 142–153 (1987).

    Article  CAS  Google Scholar 

  7. Hollowell, J. G. et al. Serum TSH T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    Article  CAS  Google Scholar 

  8. Heymann, R. & Brent, G. A. Rapid progression from subclinical to symptomatic overt hypothyroidism. Endocr. Pract. 11, 115–119 (2005).

    Article  Google Scholar 

  9. Yeung, S. C., Chiu, A. C., Vassilopoulou-Sellin, R. & Gagel, R. F. The endocrine effects of nonhormonal antineoplastic therapy. Endocr. Rev. 19, 144–172 (1998).

    Article  CAS  Google Scholar 

  10. Stuart, N. S., Woodroffe, C. M., Grundy, R. & Cullen, M. H. Long-term toxicity of chemotherapy for testicular cancer—the cost of cure. Br. J. Cancer 61, 479–484 (1990).

    Article  CAS  Google Scholar 

  11. Sutcliffe, S. B., Chapman, R. & Wrigley, P. F. Cyclical combination chemotherapy and thyroid function in patients with advanced Hodgkin's disease. Med. Pediatr. Oncol. 9, 439–448 (1981).

    Article  CAS  Google Scholar 

  12. Mandac, J. C., Chaudhry, S., Sherman, K. E. & Tomer, Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43, 661–672 (2006).

    Article  CAS  Google Scholar 

  13. Vassilopoulou-Sellin, R. Endocrine effects of cytokines. Oncology (Williston Park) 8, 43–46 (1994).

    CAS  Google Scholar 

  14. Atkins, M. B. et al. Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N. Engl. J. Med. 318, 1557–1563 (1988).

    Article  CAS  Google Scholar 

  15. Franzke, A. et al. Autoimmunity resulting from cytokine treatment predicts long-term survival in patients with metastatic renal cell cancer. J. Clin. Oncol. 17, 529–533 (1999).

    Article  CAS  Google Scholar 

  16. Weijl, N. I. et al. Hypothyroidism during immunotherapy with interleukin-2 is associated with antithyroid antibodies and response to treatment. J. Clin. Oncol. 11, 1376–1383 (1993).

    Article  CAS  Google Scholar 

  17. Krouse, R. S. et al. Thyroid dysfunction in 281 patients with metastatic melanoma or renal carcinoma treated with interleukin-2 alone. J. Immunother. Emphasis Tumor Immunol. 18, 272–278 (1995).

    Article  CAS  Google Scholar 

  18. Badros, A. Z. et al. Hypothyroidism in patients with multiple myeloma following treatment with thalidomide. Am. J. Med. 112, 412–413 (2002).

    Article  Google Scholar 

  19. de Savary, N., Lee, R. & Vaidya, B. Severe hypothyroidism after thalidomide treatment. J. R. Soc. Med. 97, 443 (2004).

    Article  Google Scholar 

  20. Stein, E. M. & Rivera, C. Transient thyroiditis after treatment with lenalidomide in a patient with metastatic renal cell carcinoma. Thyroid 17, 681–683 (2007).

    Article  Google Scholar 

  21. Sherman, S. I. et al. Central hypothyroidism associated with retinoid X receptor-selective ligands. N. Engl. J. Med. 340, 1075–1079 (1999).

    Article  CAS  Google Scholar 

  22. Hancock, S. L., McDougall, I. R. & Constine, L. S. Thyroid abnormalities after therapeutic external radiation. Int. J. Radiat. Oncol. Biol. Phys. 31, 1165–1170 (1995).

    Article  CAS  Google Scholar 

  23. Loeffler, J. S., Tarbell, N. J., Garber, J. R. & Mauch, P. The development of Graves' disease following radiation therapy in Hodgkin's disease. Int. J. Radiat. Oncol. Biol. Phys. 14, 175–178 (1988).

    Article  CAS  Google Scholar 

  24. Petersen, M., Keeling, C. A. & McDougall, I. R. Hyperthyroidism with low radioiodine uptake after head and neck irradiation for Hodgkin's disease. J. Nucl. Med. 30, 255–257 (1989).

    CAS  PubMed  Google Scholar 

  25. de Groot, J. W., Zonnenberg, B. A., Plukker, J. T., van Der Graaf, W. T. & Links, T. P. Imatinib induces hypothyroidism in patients receiving levothyroxine. Clin. Pharmacol. Ther. 78, 433–438 (2005).

    Article  CAS  Google Scholar 

  26. Rini, B. I. et al. Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 99, 81–83 (2007).

    Article  CAS  Google Scholar 

  27. Wong, E. et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid 17, 351–355 (2007).

    Article  CAS  Google Scholar 

  28. de Groot, J. W., Links, T. P. & van der Graaf, W. T. Tyrosine kinase inhibitors causing hypothyroidism in a patient on levothyroxine. Ann. Oncol. 17, 1719–1720 (2006).

    Article  CAS  Google Scholar 

  29. Desai, J. et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med. 145, 660–664 (2006).

    Article  Google Scholar 

  30. Feldman, D. R., Martorella, A. J., Robbins, R. J. & Motzer, R. J. Re: hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 99, 974–975 (2007).

    Article  Google Scholar 

  31. Schoeffski, P. et al. Sunitinib-related thyroid dysfunction: a single-center retrospective and prospective evaluation. J. Clin. Oncol. 24 (Suppl 18), 3092 (2006).

    Google Scholar 

  32. Mannavola, D. et al. A novel tyrosine kinase inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J. Clin. Endocrinol. Metab. 92, 3531–3534 (2007).

    Article  CAS  Google Scholar 

  33. Tamaskar, I. et al. Thyroid function test abnormalities in patients with metastatic renal cell carcinoma treated with sorafenib. Ann. Oncol. 19, 265–268 (2008).

    Article  CAS  Google Scholar 

  34. Curran, P. G. & DeGroot, L. J. The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr. Rev. 12, 135–150 (1991).

    Article  CAS  Google Scholar 

  35. Surks, M. I. & Sievert, R. Drugs and thyroid function. N. Engl. J. Med. 333, 1688–1694 (1995).

    Article  CAS  Google Scholar 

  36. Schröder-van der Elst, J. P. et al. Effects of 5, 5'-diphenylhydantoin on the metabolic pathway of thyroid hormone in rats. Eur. J. Endocrinol. 136, 324–329 (1997).

    Article  Google Scholar 

  37. De Luca, F. et al. Changes in thyroid function tests induced by 2 month carbamazepine treatment in L-thyroxine-substituted hypothyroid children. Eur. J. Pediatr. 145, 77–79 (1986).

    Article  CAS  Google Scholar 

  38. Takasu, N., Takara, M. & Komiya, I. Rifampin-induced hypothyroidism in patients with Hashimoto's thyroiditis. N. Engl. J. Med. 352, 518–519 (2005).

    Article  CAS  Google Scholar 

  39. Novartis Pharmaceuticals Corporation. Gleevec (imatinib mesylate): full prescribing information. Novartis Pharmaceuticals Corporation, East Hanover, NJ (2002).

  40. Wang, J. F. et al. Presence and possible role of vascular endothelial growth factor in thyroid cell growth and function. J. Endocrinol. 157, 5–12 (1998).

    Article  CAS  Google Scholar 

  41. Gordon, M. S. et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–850 (2001).

    Article  CAS  Google Scholar 

  42. Willett, C. G. et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J. Clin. Oncol. 23, 8136–8139 (2005).

    Article  Google Scholar 

  43. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  Google Scholar 

  44. Grossmann, M., Premaratne, E., Desai, J. & Davis, I. D. Thyrotoxicosis during sunitinib treatment for renal cell carcinoma. Clin. Endocrinol. (Oxf.) 69, 669–672 (2008).

    Article  CAS  Google Scholar 

  45. Mendel, D. B. et al. In vivo antitumour activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  46. Takahashi, M. et al. Cloning and expression of the ret proto-oncogene encoding a receptor tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578 (1988).

    CAS  PubMed  Google Scholar 

  47. Nakamura, T., Ishizaka, Y., Nagao, M., Hara, M. & Ishikawa, T. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J. Pathol. 172, 255–260 (1994).

    Article  CAS  Google Scholar 

  48. Chiloeches, A. & Marais, R. Is BRAF the Achilles' heel of thyroid cancer? Clin. Cancer Res. 12, 1661–1664 (2006).

    Article  CAS  Google Scholar 

  49. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  Google Scholar 

  50. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  Google Scholar 

  51. Ryan, C. W. et al. Sorafenib with interferon alfa-2b as first-line treatment of advanced renal carcinoma: a phase II study of the Southwest Oncology Group. J. Clin. Oncol. 22, 3296–3301 (2007).

    Article  Google Scholar 

  52. Wolter, P., Dumez, H. & Schöffski, P. Laboratory abnormalities suggesting thyroid dysfunction in patients treated with sunitinib. Ann. Intern. Med. [http://www.annals.org/cgi/eletters/145/9/660] (2007).

  53. Garfield, D. H., Hercbergs, A. & Davis, P. J. Re: Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 99, 975–976 (2007).

    Article  Google Scholar 

  54. Davis, P. J. et al. Cell surface receptor for thyroid hormone and tumor cell proliferation. Exp. Rev. Endocrinol. Metabol. 1, 753–761 (2007).

    Article  Google Scholar 

  55. Surks, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA. 291, 228–238 (2004).

    Article  CAS  Google Scholar 

  56. Garfield, D., Hercbergs, A. & Davis P. Unanswered questions regarding the management of sunitinib-induced hypothyroidism. Nat. Clin. Pract. Oncol. 4, 674–675 (2007).

    Article  Google Scholar 

  57. Baffert, F. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 290, H547–H559 (2006).

    Article  CAS  Google Scholar 

  58. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  Google Scholar 

  59. Maitland, M. L. & Ratain, M. J. Terminal ballistics of kinase inhibitors: there are no magic bullets. Ann. Intern. Med. 145, 702–703 (2006).

    Article  Google Scholar 

  60. Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    Article  CAS  Google Scholar 

  61. Cho, J. Y., Sagartz, J. E., Capen, C. C., Mazzaferri, E. L. & Jhiang, S. M. Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice. Oncogene 18, 3659–3665 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampietro Gasparini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torino, F., Corsello, S., Longo, R. et al. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat Rev Clin Oncol 6, 219–228 (2009). https://doi.org/10.1038/nrclinonc.2009.4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing