Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification

Abstract

Medulloblastoma is the most common brain malignancy in children and tremendous advances have recently been made in understanding the pathogenesis of this tumor. The Hedgehog and Wingless signaling pathways are implicated in medulloblastoma development, and both pathways were discovered as a result of analyses of genetic syndromes associated with the tumor. Over the past 80 years, considerable progress has been made in the treatment of what was once a fatal disease. The first survival reports followed the introduction of craniospinal irradiation, and yet the success of this modality, which continues to be a central component of treatment regimens for patients older than 3 years, comes at a significant cost. The present challenge in medulloblastoma treatment is to improve upon existing survival rates and to minimize the side effects of treatment. The current tools of clinical risk assessment fail to adequately identify patients older than 3 years who require less radiation and those who require more radiation. Significant effort has been made to improve clinical risk stratification and titration of treatment by analyzing properties of the tumor cells themselves for prognostic significance. These efforts include identifying histopathologic, cytogenetic, and molecular features that may correlate with prognosis.

Key Points

  • Studies of murine models suggest that aberrant granule-cell development might result in a subset of medulloblastoma tumors; recently identified cerebellar neural stem cells might be another potential cell of origin for the tumor

  • Overactive SHH signaling is the best characterized of the molecular aberrations resulting in medulloblastoma, although roles for WNT signaling and other pathways have been described

  • Patients diagnosed with medulloblastoma are stratified for treatment by clinical criteria resulting in a significant number of patients being under treated or over treated with significant consequences

  • Accurate risk assessment is complicated by the variability of tumor behavior, and consequently considerable effort has been made over the past 20 years to assign risk on the basis of a better understanding of the biology of the tumor

  • Biologic parameters investigated for prognostic value include histopathologic, cytogenetic, and molecular features; although promising associations have been demonstrated, none has been used for patient stratification in a clinical trial

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Post-gadolinium MRI of a 4-year-old with medulloblastoma presenting with morning vomiting and ataxia
Figure 2: Granule-cell development and tumorigenesis of medulloblastoma
Figure 3: Sonic hedgehog and Wingless signaling pathways implicated in the formation of medulloblastoma
Figure 4: Postoperative risk stratification and treatment of medulloblastoma
Figure 5: Histopathologic subtypes of medulloblastoma
Figure 6: Chromosomal instability and medulloblastoma prognosis

Similar content being viewed by others

Filippo Spreafico, Conrad V. Fernandez, … Kathy Pritchard-Jones

References

  1. Gurney JG et al. (1996) Trends in cancer incidence among children in the US. Cancer 78: 532–541

    CAS  PubMed  Google Scholar 

  2. McNeil DE et al. (2002) Incidence and trends in pediatric malignancies medulloblastoma/primitive neuroectodermal tumor: a SEER update. Surveillance Epidemiology and End Results. Med Pediatr Oncol 39: 190–194

    PubMed  Google Scholar 

  3. Gurney JG and Kadan-Lottick N (2001) Brain and other central nervous system tumors: rates, trends, and epidemiology. Curr Opin Oncol 13: 160–166

    CAS  PubMed  Google Scholar 

  4. Halperin EC et al. (2005) Pediatric Radiation Oncology. Philadelphia: Lippincott Williams and Wilkins

    Google Scholar 

  5. Pomeroy SL et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 41: 436–442

    Google Scholar 

  6. Fouladi M et al. (1999) Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 17: 3234–3237

    CAS  PubMed  Google Scholar 

  7. Bailey P and Cushing H (1925) Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood. Arch Neurol Psychiatry 14: 192–224

    Google Scholar 

  8. Cushing H (1930) Experiences with the cerebellar medulloblastomas: a critical review. Acta Pathol Microbiol Scand 1: 1–86

    Google Scholar 

  9. Bloom HJ et al. (1969) The treatment and prognosis of medulloblastoma in children: a study of 82 verified cases. Am J Roentgenol Radium Ther Nucl Med 105: 43–62

    CAS  PubMed  Google Scholar 

  10. St Clair WH et al. (2004) Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys 58: 727–734

    CAS  PubMed  Google Scholar 

  11. Wang VY and Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2: 484–491

    CAS  PubMed  Google Scholar 

  12. Fogarty MP et al. (2005) Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64: 458–475

    CAS  PubMed  Google Scholar 

  13. Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11: 17–22

    CAS  PubMed  Google Scholar 

  14. Knoepfler PS and Kenney AM (2006) Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5: 47–52

    CAS  PubMed  Google Scholar 

  15. Wechsler-Reya RJ and Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22: 103–114

    CAS  PubMed  Google Scholar 

  16. Dellovade T et al. (2006) The hedgehog pathway and neurological disorders. Annu Rev Neurosci 29: 539–563

    CAS  PubMed  Google Scholar 

  17. Kimura H et al. (2005) Gli1 is important for medulloblastoma formation in Ptc1+/− mice. Oncogene 24: 4026–4036

    CAS  PubMed  Google Scholar 

  18. Kenney AM et al. (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28

    CAS  PubMed  Google Scholar 

  19. Oliver TG et al. (2003) Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rao G et al. (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23: 6156–6162

    CAS  PubMed  Google Scholar 

  21. Browd SR et al. (2006) N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66: 2666–2672

    CAS  PubMed  Google Scholar 

  22. Zurawel RH et al. (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27: 44–51

    CAS  PubMed  Google Scholar 

  23. Hallahan AR et al. (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64: 7794–7800

    CAS  PubMed  Google Scholar 

  24. Thompson MC et al. (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24: 1924–1931

    CAS  PubMed  Google Scholar 

  25. Baeza N et al. (2003) AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22: 632–636

    CAS  PubMed  Google Scholar 

  26. Eberhart CG et al. (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59: 333–337

    CAS  PubMed  Google Scholar 

  27. Huang H et al. (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156: 433–437

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zurawel RH et al. (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58: 896–899

    CAS  PubMed  Google Scholar 

  29. Holcomb VB et al. (2006) Ku80 and p53 suppress medulloblastoma that arise independent of Rag-1-induced DSBs. Oncogene 25: 7159–7165

    CAS  PubMed  Google Scholar 

  30. Yan CT et al. (2006) XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci USA 103: 7378–7383

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee Y and McKinnon PJ (2002) DNA ligase IV suppresses medulloblastoma formation. Cancer Res 62: 6395–6399

    CAS  PubMed  Google Scholar 

  32. Lee A et al. (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8: 723–729

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh SK et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    CAS  PubMed  Google Scholar 

  34. Singh SK et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    CAS  PubMed  Google Scholar 

  35. Packer RJ et al. (2003) Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg 39: 60–67

    PubMed  Google Scholar 

  36. Squire SE et al. (2006) Atypical teratoid/rhabdoid tumor: the controversy behind radiation therapy. J Neurooncol 81: 97–111

    PubMed  Google Scholar 

  37. Rutkowski S (2006) Current treatment approaches to early childhood medulloblastoma. Expert Rev Neurother 6: 1211–1221

    PubMed  Google Scholar 

  38. Evans AE et al. (1990) The treatment of medulloblastoma: results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg 72: 572–582

    CAS  PubMed  Google Scholar 

  39. Tait DM et al. (1990) Adjuvant chemotherapy for medulloblastoma: the first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur J Cancer 26: 464–469

    CAS  PubMed  Google Scholar 

  40. Jenkin D et al. (2000) Prognostic factors for medulloblastoma. Int J Radiat Oncol Biol Phys 47: 573–584

    CAS  PubMed  Google Scholar 

  41. Packer RJ et al. (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: A Children's Cancer Group Study. J Clin Oncol 17: 2127–2136

    CAS  PubMed  Google Scholar 

  42. Thomas PR et al. (2000) Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J Clin Oncol 18: 3004–3011

    CAS  PubMed  Google Scholar 

  43. Ris MD et al. (2001) Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol 19: 3470–3476

    CAS  PubMed  Google Scholar 

  44. Packer RJ et al. (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 24: 4202–4208

    CAS  PubMed  Google Scholar 

  45. Mulhern RK et al. (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23: 5511–5519

    PubMed  Google Scholar 

  46. Zeltzer PM et al. (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study. J Clin Oncol 17: 832–845

    CAS  PubMed  Google Scholar 

  47. Packer RJ et al. (1994) Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 81: 690–698

    CAS  PubMed  Google Scholar 

  48. Gajjar A et al. (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7: 813–820

    PubMed  Google Scholar 

  49. Verlooy J et al. (2006) Treatment of high risk medulloblastomas in children above the age of 3 years: a SFOP study. Eur J Cancer 42: 3004–3014

    CAS  PubMed  Google Scholar 

  50. Burger PC et al. (2002) Surgical Pathology of the Nervous System and its Coverings. Philadelphia: Churchill Livingstone

    Google Scholar 

  51. Schofield D et al. (1995) Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 146: 472–480

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pietsch T et al. (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57: 2085–2088

    CAS  PubMed  Google Scholar 

  53. Raffel C et al. (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57: 842–845

    CAS  PubMed  Google Scholar 

  54. Sure U et al. (1995) Staging, scoring and grading of medulloblastoma: a postoperative prognosis predicting system based on the cases of a single institute. Acta Neurochir (Wien) 132: 59–65

    CAS  Google Scholar 

  55. Bailey CC et al. (1995) Prospective randomised trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Paediatric Oncology (SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II. Med Pediatr Oncol 25: 166–178

    CAS  PubMed  Google Scholar 

  56. Giangaspero F et al. (1999) Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91: 971–977

    CAS  PubMed  Google Scholar 

  57. Giangaspero F et al. (1992) Large-cell medulloblastomas: a distinct variant with highly aggressive behavior. Am J Surg Pathol 16: 687–693

    CAS  PubMed  Google Scholar 

  58. Brown HG et al. (2000) “Large cell/anaplastic” medulloblastomas: a Pediatric Oncology Group Study. J Neuropathol Exp Neurol 59: 857–865

    CAS  PubMed  Google Scholar 

  59. Eberhart CG et al. (2002) Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94: 552–560

    PubMed  Google Scholar 

  60. McManamy CS et al. (2003) Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J Neuropathol Exp Neurol 62: 627–632

    PubMed  Google Scholar 

  61. Lamont JM et al. (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10: 5482–5493

    CAS  PubMed  Google Scholar 

  62. Eberhart CG et al. (2003) Medulloblastomas with systemic metastases: evaluation of tumor histopathology and clinical behavior in 23 patients. J Pediatr Hematol Oncol 25: 198–203

    PubMed  Google Scholar 

  63. Eberhart CG and Burger PC (2003) Anaplasia and grading in medulloblastomas. Brain Pathol 13: 376–385

    PubMed  Google Scholar 

  64. Leonard JR et al. (2001) Large cell/anaplastic medulloblastomas and medullomyoblastomas: clinicopathological and genetic features. J Neurosurg 95: 82–88

    CAS  PubMed  Google Scholar 

  65. Eberhart CG et al. (2002) Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol 12: 36–44

    CAS  PubMed  Google Scholar 

  66. Stearns D et al. (2006) c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res 66: 673–681

    CAS  PubMed  Google Scholar 

  67. Cogen PH et al. (1992) Involvement of multiple chromosome 17p loci in medulloblastoma tumorigenesis. Am J Hum Genet 50: 584–589

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Batra SK et al. (1995) Prognostic implications of chromosome 17p deletions in human medulloblastomas. J Neurooncol 24: 39–45

    CAS  PubMed  Google Scholar 

  69. Pan E et al. (2005) Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 11: 4733–4740

    CAS  PubMed  Google Scholar 

  70. Emadian SM et al. (1996) Correlation of chromosome 17p loss with clinical outcome in medulloblastoma. Clin Cancer Res 2: 1559–1564

    CAS  PubMed  Google Scholar 

  71. Biegel JA et al. (1997) Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin Cancer Res 3: 473–478

    CAS  PubMed  Google Scholar 

  72. Taylor MD et al. (2000) Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47: 888–901

    CAS  PubMed  Google Scholar 

  73. Rood BR et al. (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62: 3794–3797

    CAS  PubMed  Google Scholar 

  74. Di Marcotullio L et al. (2004) REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci USA 101: 10833–10838

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferretti E et al. (2005) Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends Mol Med 11: 537–545

    CAS  PubMed  Google Scholar 

  76. Tomita T et al. (1988) Flow cytometric DNA analysis of medulloblastoma: prognostic implication of aneuploidy. Cancer 61: 744–749

    CAS  PubMed  Google Scholar 

  77. Yasue M et al. (1989) Prognostic importance of DNA ploidy in medulloblastoma of childhood. J Neurosurg 70: 385–391

    CAS  PubMed  Google Scholar 

  78. Schofield DE et al. (1992) DNA content and other prognostic features in childhood medulloblastoma: proposal of a scoring system. Cancer 69: 1307–1314

    CAS  PubMed  Google Scholar 

  79. Gajjar AJ et al. (1993) Relation of tumor-cell ploidy to survival in children with medulloblastoma. J Clin Oncol 11: 2211–2217

    CAS  PubMed  Google Scholar 

  80. Zerbini C et al. (1993) Prognostic factors in medulloblastoma, including DNA ploidy. J Clin Oncol 11: 616–622

    CAS  PubMed  Google Scholar 

  81. Carter SL et al. (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043–1048

    CAS  PubMed  Google Scholar 

  82. Scheurlen WG et al. (1998) Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 16: 2478–2485

    CAS  PubMed  Google Scholar 

  83. Aldosari N et al. (2002) MYCC and MYCN oncogene amplification in medulloblastoma: a fluorescence in situ hybridization study on paraffin sections from the Children's Oncology Group. Arch Pathol Lab Med 126: 540–544

    PubMed  Google Scholar 

  84. Eberhart CG et al. (2004) Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 63: 441–449

    CAS  PubMed  Google Scholar 

  85. Herms J et al. (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89: 395–402

    CAS  PubMed  Google Scholar 

  86. Grotzer MA et al. (2001) MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 7: 2425–2433

    CAS  PubMed  Google Scholar 

  87. Gajjar A et al. (2004) Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 22: 984–993

    CAS  PubMed  Google Scholar 

  88. Gilbertson RJ et al. (1995) Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br J Cancer 71: 473–477

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Herms JW et al. (1997) Potential prognostic value of C-erbB-2 expression in medulloblastomas in very young children. J Pediatr Hematol Oncol 19: 510–515

    CAS  PubMed  Google Scholar 

  90. Gilbertson R et al. (2001) Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 85: 705–712

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hernan R et al. (2003) ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res 63: 140–148

    CAS  PubMed  Google Scholar 

  92. Segal RA et al. (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91: 12867–12871

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Grotzer MA et al. (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18: 1027–1035

    CAS  PubMed  Google Scholar 

  94. Kim JY et al. (1999) Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59: 711–719

    CAS  PubMed  Google Scholar 

  95. Ellison DW et al. (2005) beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J Clin Oncol 23: 7951–7957

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank WH Polkinghorn for her support and assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy J Tarbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polkinghorn, W., Tarbell, N. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Rev Clin Oncol 4, 295–304 (2007). https://doi.org/10.1038/ncponc0794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing