Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing?

Key Points

  • The incidences of obesity, type 2 diabetes mellitus (T2DM), and many cancers are rapidly increasing worldwide; clinicians are increasingly required to treat patients with both T2DM and cancer, or both obesity and cancer

  • Obesity is a risk factor for some cancers, and obesity at and weight gain after diagnosis are associated with adverse cancer outcomes; the interactions of diabetes and/or its treatments with cancer risk and outcomes are complex and controversial

  • Laboratory findings provide a rationale for clinical trials of the antidiabetic drug metformin for cancer treatment; although the first two studies (in pancreatic cancer) revealed no survival benefit, many additional studies are ongoing

  • Concerns about an increased cancer risk associated with other antidiabetic agents have been raised; in general, follow-up studies have failed to confirm such risks, but data on long-term exposure remain sparse and pharmacovigilance is necessary

  • Certain drugs used in the treatment of cancer lead to metabolic toxicities, chiefly hyperglycaemia, which might be dose-limiting for some patients, especially those with pre-existing diabetes

  • Clarification of the mechanisms underlying the relationships between obesity and neoplasia might provide clues relevant to novel cancer treatments and prevention strategies

Abstract

The prevalence of obesity, of type 2 diabetes mellitus (T2DM), and of cancer are all increasing globally. The relationships between these diseases are complex, and thus difficult to elucidate; nevertheless, evidence supports the hypothesis that obesity increases the risks of both T2DM and certain cancers. Further complexity arises from controversial evidence that specific drugs used in the treatment of T2DM increase or decrease cancer risk or influence cancer prognosis. Herein, we review the current evidence from studies that have addressed these relationships, and summarize the methodological challenges that are frequently encountered in such research. We also outline the physiology that links obesity, T2DM, and neoplasia. Finally, we outline the practical principles relevant to the increasingly common challenge of managing patients who have been diagnosed with both diabetes and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified representation of the physiological processes that might link obesity, diabetes, and neoplasia.
Figure 2: Clinical vignette and putative causal relationships between obesity, diabetes, antidiabetic medications, cancer, and cancer treatments.

Similar content being viewed by others

References

  1. Tuffier, T. Diabete et neoplasmes. Archives generales de medecine 7, 129–140 (1888).

    Google Scholar 

  2. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Langenberg, C. et al. Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med. 9, e1001230 (2012).

    Article  PubMed  Google Scholar 

  4. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh, G. M. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE 8, e65174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. [no authors listed]. Diabetes Fact Sheet. WHO http://www.who.int/mediacentre/factsheets/fs312/en/ (2015).

  8. Di Angelantonio, E. et al. Association of cardiometabolic multimorbidity with mortality. JAMA 314, 52–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Murray, C. J. et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet http://dx.doi.org/10.1016/s0140-6736(15)61340-x (2015).

  10. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  11. Guariguata, L. et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Ogden, C. L., Carroll, M. D., Fryar, C. D. & Flegal, K. M. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 1–8 (2015).

  13. Youlden, D. R. et al. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 36, 237–248 (2012).

    Article  PubMed  Google Scholar 

  14. Arnold, M. et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 16, 36–46 (2015).

    Article  PubMed  Google Scholar 

  15. Wells, J. C., Coward, W. A., Cole, T. J. & Davies, P. S. The contribution of fat and fat-free tissue to body mass index in contemporary children and the reference child. Int. J. Obes Relat. Metab. Disord. 26, 1323–1328 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kaaks, R. & Kühn, T. Epidemiology: obesity and cancer — the evidence is fattening up. Nat. Rev. Endocrinol. 10, 644–645 (2014).

    Article  PubMed  Google Scholar 

  17. Keum, N. et al. Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J. Natl Cancer Inst. 107, http://dx.doi.org/10.1093/jnci/djv088 (2015).

  18. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  19. World Cancer Research Fund and the American Institute for Cancer Research. Continuous update project report: diet, nutrition, physical activity and liver cancer. http://wcrf.org/sites/default/files/Liver-Cancer-2015-Report.pdf (2015).

  20. World Cancer Research Fund and the American Institute for Cancer Research. Continuous update project report. Food, nutrition, physical activity, and the prevention of breast cancer. http://wcrf.org/sites/default/files/Breast-Cancer-2010-Report.pdf (2015).

  21. World Cancer Research Fund and the American Institute for Cancer Research. Continuous update project report: diet, nutrition, physical activity, and prostate cancer. http://wcrf.org/sites/default/files/Prostate-Cancer-2014-Report.pdf (2015).

  22. Lerro, C. C., McGlynn, K. A. & Cook, M. B. A systematic review and meta-analysis of the relationship between body size and testicular cancer. Br. J. Cancer 103, 1467–1474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y. et al. Obesity and incidence of lung cancer: a meta-analysis. Int. J. Cancer 132, 1162–1169 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Song, M. et al. Trajectory of body shape across the lifespan and cancer risk. Int. J. Cancer http://dx.doi.org/10.1002/ijc.29981 (2015).

  25. Neuhouser, M. L. et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women's health initiative randomized clinical trials. JAMA Oncol. 1, 611–621 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reeves, G. K. et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335, 1134 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Sjostrom, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    Article  PubMed  Google Scholar 

  29. Douglas, I. J., Bhaskaran, K., Batterham, R. L. & Smeeth, L. Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med. 12, e1001925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C. & Hankinson, S. E. Adult weight change and risk of postmenopausal breast cancer. JAMA 296, 193–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Parker, E. D. & Folsom, A. R. Intentional weight loss and incidence of obesity-related cancers: the Iowa Women's Health Study. Int. J. Obes Relat. Metab. Disord. 27, 1447–1452 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Tsilidis, K. K., Kasimis, J. C., Lopez, D. S., Ntzani, E. E. & Ioannidis, J. P. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607 (2015).

    Article  PubMed  Google Scholar 

  33. Carstensen, B., Witte, D. R. & Friis, S. Cancer occurrence in Danish diabetic patients: duration and insulin effects. Diabetologia 55, 948–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Geier, A. S. et al. Cancer detection rates following enrolment in a disease management programme for type 2 diabetes. Diabetologia 56, 1944–1948 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Bansal, D., Bhansali, A., Kapil, G., Undela, K. & Tiwari, P. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostat. Dis. 16, 151–158 (2013).

    Article  CAS  Google Scholar 

  36. Tseng, C. H. Diabetes and risk of prostate cancer: a study using the National Health Insurance. Diabetes Care 34, 616–621 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dhindsa, S. et al. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 5462–5468 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Freedland, S. J. & Aronson, W. J. Obesity and prostate cancer. Urology 65, 433–439 (2005).

    Article  PubMed  Google Scholar 

  39. Ma, J. et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 9, 1039–1047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gandini, S. et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. (Phila.) 7, 867–885 (2014).

    Article  CAS  Google Scholar 

  41. Wu, L., Zhu, J., Prokop, L. J. & Murad, M. H. Pharmacologic therapy of diabetes and overall cancer risk and mortality: a meta-analysis of 265 studies. Sci. Rep. 5, 10147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Colhoun, H. M. & Group, S. E. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 52, 1755–1765 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bronsveld, H. K. et al. Treatment with insulin (analogues) and breast cancer risk in diabetics; a systematic review and meta-analysis of in vitro, animal and human evidence. Breast Cancer Res. 17, 100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kowall, B., Stang, A., Rathmann, W. & Kostev, K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiol. Drug Saf. 24, 865–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Suissa, S. & Azoulay, L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care 35, 2665–2673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pocock, S. J. & Smeeth, L. Insulin glargine and malignancy: an unwarranted alarm. Lancet 374, 511–513 (2009).

    Article  PubMed  Google Scholar 

  48. Garber, A. J. et al. AACE/ACE comprehensive diabetes management algorithm 2015. Endocr. Pract. 21, 438–447 (2015).

    Article  PubMed  Google Scholar 

  49. Pollak, M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat. Med. 20, 591–593 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Pollak, M. N. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2, 778–790 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Decensi, A. et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. (Phila.) 3, 1451–1461 (2010).

    Article  CAS  Google Scholar 

  52. Libby, G. et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Noto, H., Goto, A., Tsujimoto, T. & Noda, M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS ONE 7, e33411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mamtani, R. et al. Incidence of bladder cancer in patients with type 2 diabetes treated with metformin or sulfonylureas. Diabetes Care 37, 1910–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsilidis, K. K. et al. Metformin does not affect cancer risk: a cohort study in the UK Clinical Practice Research Datalink analyzed like an intention-to-treat trial. Diabetes Care 37, 2522–2532 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Higurashi, T. et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. http://dx.doi.org/10.1016/s1470-2045(15)00565-3 (2016).

  57. Currie, C. J., Poole, C. D. & Gale, E. A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hemkens, L. G. et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52, 1732–1744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jonasson, J. M. et al. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 52, 1745–1754 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Mayer, D., Shukla, A. & Enzmann, H. Proliferative effects of insulin analogues on mammary epithelial cells. Arch. Physiol. Biochem. 114, 38–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Wu, J. W., Filion, K. B., Azoulay, L., Doll, M. K. & Suissa, S. The effect of long-acting insulin analogs on the risk of cancer: a systematic review of observational studies. Diabetes Care http://dx.doi.org/10.2337/dc15-1816 (2016).

  62. Proks, P., Reimann, F., Green, N., Gribble, F. & Ashcroft, F. Sulfonylurea stimulation of insulin secretion. Diabetes 51 (Suppl. 3), S368–S376 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12, 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Chang, C. H., Lin, J. W., Wu, L. C., Lai, M. S. & Chuang, L. M. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, E1170–1175 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Kowall, B., Rathmann, W. & Kostev, K. Are sulfonylurea and insulin therapies associated with a larger risk of cancer than metformin therapy? A retrospective database analysis. Diabetes Care 38, 59–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Tuccori, M., Wu, J. W., Yin, H., Majdan, A. & Azoulay, L. The use of glyburide compared with other sulfonylureas and the risk of cancer in patients with type 2 diabetes. Diabetes Care 38, 2083–2089 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Loke, Y. K. & Mattishent, K. Bladder cancer: pioglitazone—when is a prescription drug safe? Nat. Rev. Urol. 12, 655–656 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Lewis, J. D. et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 34, 916–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Azoulay, L. et al. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ 344, e3645 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. U.S. Food and Drug Administration. FDA Drug Safety Communication: update to ongoing safety review of Actos (pioglitazone) and increased risk of bladder cancer. http://www.fda.gov/Drugs/DrugSafety/ucm259150.htm (2012).

  72. Levin, D. et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia 58, 493–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Lewis, J. D. et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA 314, 265–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Faillie, J. L. & Hillaire-Buys, D. Examples of how the pharmaceutical industries distort the evidence of drug safety: the case of pioglitazone and the bladder cancer issue. Pharmacoepidemiol. Drug Saf. http://dx.doi.org/10.1002/pds.3925 (2015).

  75. Tuccori, M. et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ 352, i1541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Elashoff, M., Matveyenko, A. V., Gier, B., Elashoff, R. & Butler, P. C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141, 150–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Raschi, E., Piccinni, C., Poluzzi, E., Marchesini, G. & De Ponti, F. The association of pancreatitis with antidiabetic drug use: gaining insight through the FDA pharmacovigilance database. Acta Diabetol. 50, 569–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Azoulay, L. Incretin-based drugs and adverse pancreatic events: almost a decade later and uncertainty remains. Diabetes Care 38, 951–953 (2015).

    Article  PubMed  Google Scholar 

  79. Gokhale, M. et al. Dipeptidyl-peptidase-4 inhibitors and pancreatic cancer: a cohort study. Diabetes, Obes. Metabolism 16, 1247–1256 (2014).

    Article  CAS  Google Scholar 

  80. Tseng, C. H. Sitagliptin and pancreatic cancer risk in patients with type 2 diabetes. Eur. J. Clin. Invest. 46, 70–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Egan, A. G. et al. Pancreatic safety of incretin-based drugs—FDA and EMA assessment. N. Engl. J. Med. 370, 794–797 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Waser, B., Beetschen, K., Pellegata, N. S. & Reubi, J. C. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology 94, 291–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Rosol, T. J. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicol. Pathol. 41, 303–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Drab, S. R. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: a clinical update of safety and efficacy. Curr. Diabetes Rev. http://dx.doi.org/10.2174/1573399812666151223093841 (2015).

  86. Koehler, J. A. et al. GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7. Cell. Metab. 21, 379–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Argiles, J. M., Busquets, S., Stemmler, B. & Lopez-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  89. Calle, E. E. & Terrell, D. D. Utility of the National Death Index for ascertainment of mortality among cancer prevention study II participants. Am. J. Epidemiol. 137, 235–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Chan, D. S. et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 25, 1901–1914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Copson, E. R. et al. Obesity and the outcome of young breast cancer patients in the UK: the POSH study. Ann. Oncol. 26, 101–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Playdon, M. C. et al. weight gain after breast cancer diagnosis and all-cause mortality: systematic review and meta-analysis. J. Natl Cancer Inst. 107, djv275 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pettersson, A. et al. Modification of the association between obesity and lethal prostate cancer by TMPRSS2:ERG. J. Natl Cancer Inst. 105, 1881–1890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goodwin, P. J. et al. Randomized trial of a telephone-based weight loss intervention in postmenopausal women with breast cancer receiving letrozole: the LISA trial. J. Clin. Oncol. 32, 2231–2239 (2014).

    Article  PubMed  Google Scholar 

  95. Rossi, E. L. et al. Obesity-associated alterations in inflammation, epigenetics, and mammary tumor growth persist in formerly obese mice. Cancer Prev. Res. (Phila.) 9, 339–348 (2016).

    Article  CAS  Google Scholar 

  96. Widschwendter, P. et al. The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial. Breast Cancer Res. 17, 129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagle, C. M. et al. Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. Br. J. Cancer 113, 817–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hakimi, A. A. et al. An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J. Natl Cancer Inst. 105, 1862–1870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lavie, C. J., McAuley, P. A., Church, T. S., Milani, R. V. & Blair, S. N. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. College Cardiol. 63, 1345–1354 (2014).

    Article  Google Scholar 

  100. Tseng, C. H. Obesity paradox: differential effects on cancer and noncancer mortality in patients with type 2 diabetes mellitus. Atherosclerosis 226, 186–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Seshasai, S. R. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

    Article  CAS  Google Scholar 

  102. Stein, K. B. et al. Colorectal cancer outcomes, recurrence, and complications in persons with and without diabetes mellitus: a systematic review and meta-analysis. Dig. Dis. Sci. 55, 1839–1851 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Snyder, C. F. et al. Does pre-existing diabetes affect prostate cancer prognosis? A systematic review. Prostate Cancer Prostat. Dis. 13, 58–64 (2010).

    Article  CAS  Google Scholar 

  104. Bensimon, L., Yin, H., Suissa, S., Pollak, M. N. & Azoulay, L. Type 2 diabetes and the risk of mortality among patients with prostate cancer. Cancer Causes Control 25, 329–338 (2014).

    Article  PubMed  Google Scholar 

  105. Haggstrom, C. et al. Prostate cancer, prostate cancer death, and death from other causes, among men with metabolic aberrations. Epidemiology 25, 823–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Peairs, K. S. et al. Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J. Clin. Oncol. 29, 40–46 (2011).

    Article  PubMed  Google Scholar 

  107. Luo, J. et al. Pre-existing diabetes and breast cancer prognosis among elderly women. Br. J. Cancer 113, 827–832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, A. H. et al. Diabetes and other comorbidities in breast cancer survival by race/ethnicity: the California Breast Cancer Survivorship Consortium (CBCSC). Cancer Epidemiol. Biomarkers Prev. 24, 361–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Fleming, S. T., Rastogi, A., Dmitrienko, A. & Johnson, K. D. A comprehensive prognostic index to predict survival based on multiple comorbidities: a focus on breast cancer. Med. Care 37, 601–614 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Srokowski, T. P., Fang, S., Hortobagyi, G. N. & Giordano, S. H. Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer. J. Clin. Oncol. 27, 2170–2176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Margel, D. et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J. Clin. Oncol. 31, 3069–3075 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bensimon, L., Yin, H., Suissa, S., Pollak, M. N. & Azoulay, L. The use of metformin in patients with prostate cancer and the risk of death. Cancer Epidemiol. Biomarkers Prev. 23, 2111–2118 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Stopsack, K. H., Ziehr, D. R., Rider, J. R. & Giovannucci, E. L. Metformin and prostate cancer mortality: a meta-analysis. Cancer Causes Control http://dx.doi.org/10.1007/s10552-015-0687-0 (2015).

  114. Zhang, Z. J. & Li, S. The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 16, 707–710 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. He, X. et al. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann. Oncol. 23, 1771–1780 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Romero, I. L. et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstetr. Gynecol. 119, 61–67 (2012).

    Article  Google Scholar 

  117. Liu, Z. et al. High sensitivity of an Ha-RAS transgenic model of superficial bladder cancer to metformin is associated with approximately 240-fold higher drug concentration in urine than serum. Mol. Cancer Ther. 15, 430–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Peng, M. et al. High efficacy of intravesical treatment of metformin on bladder cancer in preclinical model. Oncotarget http://dx.doi.org/10.18632/oncotarget.6933 (2016).

  119. Nayan, M. et al. The effect of metformin on cancer-specific survival outcomes in diabetic patients undergoing radical cystectomy for urothelial carcinoma of the bladder. Urol. Oncol. 33, 386.e387–e313 (2015).

    Article  CAS  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/results?term=%22cancer%22+AND+%22metformin%22+AND+%22treating%22&Search=Search (2015).

  121. DeCensi, A. et al. Differential effects of metformin on breast cancer proliferation according to markers of insulin resistance and tumor subtype in a randomized presurgical trial. Breast Cancer Res. Treat. 148, 81–90 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lord, S. R. et al. Neoadjuvant window studies of metformin and biomarker development for drugs targeting cancer metabolism. J. Natl Cancer Inst. Monogr. 2015, 81–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Hadad, S. M. et al. Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial. Breast Cancer Res. Treat. 150, 149–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Kordes, S. et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 16, 839–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Reni, M. et al. (Ir)relevance of metformin treatment in patients with metastatic pancreatic cancer: an open-label, randomized phase 2 trial. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.ccr-15-1722 (2015).

  126. Goodwin, P. J. et al. Effect of metformin versus placebo on and metabolic factors in NCIC CTG MA.32. J. Natl Cancer Inst. 107, http://dx.doi.org/10.1093/jnci/djv006 (2015).

  127. Goodwin, P. J. et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol. 20, 42–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Vissers, P. A. et al. The association between glucose-lowering drug use and mortality among breast cancer patients with type 2 diabetes. Breast Cancer Res. Treatment 150, 427–437 (2015).

    Article  CAS  Google Scholar 

  129. Gallagher, E. J. & LeRoith, D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol. Rev. 95, 727–748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pollak, M. Do cancer cells care if their host is hungry? Cell. Metabolism 9, 401–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Allott, E. H. & Hursting, S. D. Obesity and cancer: mechanistic insights from transdisciplinary studies. Endocr. Relat. Cancer 22, R365–R386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Iyengar, N. M., Hudis, C. A. & Dannenberg, A. J. Obesity and cancer: local and systemic mechanisms. Annu. Rev. Med. 66, 297–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Renehan, A. G., Zwahlen, M. & Egger, M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat. Rev. Cancer 15, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Tannenbaum, A. & Silverstone, H. The influence of the degree of caloric restriction on the formation of skin tumors and hepatomas in mice. Cancer Res. 9, 724–727 (1949).

    CAS  PubMed  Google Scholar 

  135. Algire, C., Amrein, L., Zakikhani, M., Panasci, L. & Pollak, M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr. Relat. Cancer 17, 351–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Murphy, N. et al. A nested case–control study of metabolically defined body size phenotypes and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS. Med. 13, e1001988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wolpin, B. M. et al. Hyperglycaemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer. J. Natl Cancer Inst. 105, 1027–1035 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pal, A. et al. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N. Engl. J. Med. 367, 1002–1011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ortega-Molina, A. et al. Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell. Metabolism 21, 558–570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 30, 586–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Chan, J. M. et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, 563–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Travis, R. C. et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 76, 2288–2300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thissen, J. P., Underwood, L. E. & Ketelslegers, J. M. Regulation of insulin-like growth factor-I in starvation and injury. Nutr. Rev. 57, 167–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Baxter, R. C. IGF binding proteins in cancer: mechanistic and clinical insights. Nat. Rev. Cancer 14, 329–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Key, T. J. et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl Cancer Inst. 95, 1218–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Hofmann, J. N. et al. A prospective study of circulating adipokine levels and risk of multiple myeloma. Blood 120, 4418–4420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Inamura, K. et al. Prediagnosis plasma adiponectin in relation to colorectal cancer risk according to KRAS mutation status. J. Natl Cancer Inst. 108, http://dx.doi.org/10.1093/jnci/djv363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bao, Y. et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J. Natl Cancer Inst. 105, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Hofmann, J. N. et al. Low levels of circulating adiponectin are associated with multiple myeloma risk in overweight and obese individuals. Cancer Res. 76, 1935–1941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Zakikhani, M., Dowling, R. J., Sonenberg, N. & Pollak, M. N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev. Res. (Phila.) 1, 369–375 (2008).

    Article  CAS  Google Scholar 

  152. Vansaun, M. N. Molecular pathways: adiponectin and leptin signaling in cancer. Clin. Cancer Res. 19, 1926–1932 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell. Metabolism 23, 48–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Iyengar, N. M. et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.ccr-15-2239 (2015).

  155. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell. Metabolism 22, 516–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Lee, S. Y. et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS ONE 10, e0135858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Haywood, A. et al. Corticosteroids for the management of cancer-related pain in adults. Cochrane Database Syst. Rev. 4, CD010756 (2015).

    Google Scholar 

  162. Ferris, H. A. & Kahn, C. R. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J. Clin. Invest. 122, 3854–3857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mazziotti, G., Gazzaruso, C. & Giustina, A. Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol. Metabolism 22, 499–506 (2011).

    Article  CAS  Google Scholar 

  164. Fong, A. C. & Cheung, N. W. The high incidence of steroid-induced hyperglycaemia in hospital. Diabetes Res. Clin. Pract. 99, 277–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Ariaans, G. et al. Cancer-drug induced insulin resistance: innocent bystander or unusual suspect. Cancer Treat. Rev. 41, 376–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Sonabend, R. Y. et al. Hyperglycaemia during induction therapy is associated with poorer survival in children with acute lymphocytic leukemia. J. Pediatr. 155, 73–78 (2009).

    Article  PubMed  Google Scholar 

  167. Chow, E. J. et al. Glucocorticoids and insulin resistance in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 60, 621–626 (2013).

    Article  PubMed  Google Scholar 

  168. Dool, C. J. et al. IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer. Endocr. Relat. Cancer 18, 699–709 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Gosmanov, A. R., Goorha, S., Stelts, S., Peng, L. & Umpierrez, G. E. Management of hyperglycaemia in diabetic patients with hematologic malignancies during dexamethasone therapy. Endocr. Pract. 19, 231–235 (2013).

    Article  PubMed  Google Scholar 

  170. Yu, I. C., Lin, H. Y., Sparks, J. D., Yeh, S. & Chang, C. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes 63, 3180–3188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Laaksonen, D. E. et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 27, 1036–1041 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Bosco, C., Crawley, D., Adolfsson, J., Rudman, S. & Van Hemelrijck, M. Quantifying the evidence for the risk of metabolic syndrome and its components following androgen deprivation therapy for prostate cancer: a meta-analysis. PLoS ONE 10, e0117344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Keating, N. L., Liu, P. H., O'Malley, A. J., Freedland, S. J. & Smith, M. R. Androgen-deprivation therapy and diabetes control among diabetic men with prostate cancer. Eur. Urol. 65, 816–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Keating, N. L., O'Malley, A. J., Freedland, S. J. & Smith, M. R. Does comorbidity influence the risk of myocardial infarction or diabetes during androgen-deprivation therapy for prostate cancer? Eur. Urol. 64, 159–166 (2013).

    Article  PubMed  Google Scholar 

  175. Lubik, A. A. et al. Insulin increases de novo steroidogenesis in prostate cancer cells. Cancer Res. 71, 5754–5764 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Gunter, J. H., Lubik, A. A., McKenzie, I., Pollak, M. & Nelson, C. C. The interactions between insulin and androgens in progression to castrate-resistant prostate cancer. Adv. Urol. 2012, 248607 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 6, 184–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Yap, T. A., Bjerke, L., Clarke, P. A. & Workman, P. Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr. Opin. Pharmacol. 23, 98–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ma, C. X. et al. A phase I study of the AKT inhibitor MK-2206 in combination with hormonal therapy in postmenopausal women with estrogen receptor positive metastatic breast cancer. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.ccr-15-2160 (2016).

  180. Busaidy, N. L. et al. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J. Clin. Oncol. 30, 2919–2928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Geuna, E. et al. Complications of hyperglycaemia with PI3K-AKT-mTOR inhibitors in patients with advanced solid tumours on phase I clinical trials. Br. J. Cancer 113, 1541–1547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Iams, W. T. & Lovly, C. M. Molecular pathways: clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin. Cancer Res. 21, 4270–4277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Haluska, P. et al. Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemother. Pharmacol. 65, 765–773 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Nellemann, B. et al. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity. Acta Physiol. (Oxford) 210, 392–402 (2014).

    Article  CAS  Google Scholar 

  186. Yuen, K. C., Chong, L. E. & Riddle, M. C. Influence of glucocorticoids and growth hormone on insulin sensitivity in humans. Diabet. Med. 30, 651–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Puzanov, I. et al. A phase I study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor-1 and insulin receptors, in patients with advanced solid tumors. Clin. Cancer Res. 21, 701–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Rini, B. I. et al. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J. Clin. Oncol. 32, 752–759 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang, P. et al. Paradoxical effect of rapamycin on inflammatory stress-induced insulin resistance in vitro and in vivo. Sci. Rep. 5, 14959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Verges, B. & Cariou, B. mTOR inhibitors and diabetes. Diabetes Res. Clin. Pract. 110, 101–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Meacham, L. R. et al. Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch. Intern. Med. 169, 1381–1388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Holmqvist, A. S. et al. Adult life after childhood cancer in Scandinavia: diabetes mellitus following treatment for cancer in childhood. Eur. J. Cancer 50, 1169–1175 (2014).

    Article  PubMed  Google Scholar 

  195. van Nimwegen, F. A. et al. Risk of diabetes mellitus in long-term survivors of Hodgkin lymphoma. J. Clin. Oncol. 32, 3257–3263 (2014).

    Article  PubMed  Google Scholar 

  196. Ray, W. A. Evaluating medication effects outside of clinical trials: new-user designs. Am. J. Epidemiol. 158, 915–920 (2003).

    Article  PubMed  Google Scholar 

  197. van Staa, T. P., Patel, D., Gallagher, A. M. & de Bruin, M. L. Glucose-lowering agents and the patterns of risk for cancer: a study with the General Practice Research Database and secondary care data. Diabetologia 55, 654–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Jones, N. P., Curtis, P. S. & Home, P. D. Cancer and bone fractures in observational follow-up of the RECORD study. Acta Diabetol 52, 539–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Wang, H. et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis.. Sci. Transl. Med. 8, 334ra351 (2016).

    Google Scholar 

  200. Devaraj, S. & Maitra, A. Pancreatic safety of newer incretin-based therapies: are the “-tides” finally turning? Diabetes 63, 2219–2221 (2014).

    Article  PubMed  Google Scholar 

  201. Bordeleau, L. et al. The association of basal insulin glargine and/or n-3 fatty acids with incident cancers in patients with dysglycemia. Diabetes Care 37, 1360–1366 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rhoda Lim (Cancer Prevention Centre, Jewish General Hospital, Montreal, Quebec, Canada) for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.J.K.-D. and M.N.P. researched data for the article and wrote the manuscript. All authors contributed to discussions of content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michael N. Pollak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klil-Drori, A., Azoulay, L. & Pollak, M. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing?. Nat Rev Clin Oncol 14, 85–99 (2017). https://doi.org/10.1038/nrclinonc.2016.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.120

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer