Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer

Key Points

  • A nearly impenetrable stroma and hypovascularity limit drug delivery to pancreatic ductal adenocarcinoma (PDAC) cells and thus the effectiveness of treatments, resulting in a very poor prognosis for patients

  • Various nanoparticle-based approaches to overcome the biological barriers to drug delivery that are characteristic of pancreatic cancer are being explored in order to improve patient responses and outcomes

  • Nanoformulations comprising albumin-bound paclitaxel (nab-paclitaxel) and liposomal irinotecan (MM-398) are approved for the treatment of PDAC based on survival benefits of 1.8–1.9 months

  • Various signalling pathways (for instance, the MAPK/PI3K, Hedgehog, and autophagy cascades), and the KRAS oncogene are involved in the progression of pancreatic cancer and could serve as alternative therapeutic targets

  • Strategies to overcome pathophysiological barriers and normalize the tumour matrix (such as Hedgehog-pathway inhibitors) can relieve the solid stress and improve vessel perfusion to increase nanoparticle penetration of the tumour

  • Attributes of nanomedicine, such as small size, a high degree of drug encapsulation, and controlled drug release, can improve drug delivery to the tumour by exploiting novel endocytic routes that are independent of membrane transporters

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer- related deaths. PDAC remains one of the most difficult-to-treat cancers, owing to its unique pathobiological features: a nearly impenetrable desmoplastic stroma, and hypovascular and hypoperfused tumour vessels render most treatment options largely ineffective. Progress in understanding the pathobiology and signalling pathways involved in disease progression is helping researchers to develop novel ways to fight PDAC, including improved nanotechnology-based drug-delivery platforms that have the potential to overcome the biological barriers of the disease that underlie persistent drug resistance. So-called 'nanomedicine' strategies have the potential to enable targeting of the Hedgehog-signalling pathway, the autophagy pathway, and specific RAS-mutant phenotypes, among other pathological processes of the disease. These novel therapies, alone or in combination with agents designed to disrupt the pathobiological barriers of the disease, could result in superior treatments, with increased efficacy and reduced off-target toxicities compared with the current standard-of-care regimens. By overcoming drug-delivery challenges, advances can be made in the treatment of PDAC, a disease for which limited improvement in overall survival has been achieved over the past several decades. We discuss the approaches to nanomedicine that have been pursued to date and those that are the focus of ongoing research, and outline their potential, as well as the key challenges that must be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical signalling pathways involved in PDAC pathogenesis.
Figure 2: Strategies to overcome the pathophysiological barriers impeding the effectiveness of treatments of PDAC.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    PubMed  Google Scholar 

  2. National Cancer Institute. A snapshot of pancreatic cancer. http://www.cancer.gov/research/progress/snapshots/pancreatic (2014).

  3. National Cancer Institute. A snapshot of breast cancer. http://www.cancer.gov/research/progress/snapshots/breast (2014).

  4. Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010).

    CAS  PubMed  Google Scholar 

  5. Patra, C. R., Bhattacharya, R., Mukhopadhyay, D. & Mukherjee, P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 62, 346–361 (2010).

    CAS  PubMed  Google Scholar 

  6. Burris, H. A. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    CAS  PubMed  Google Scholar 

  7. Gresham, G. K., Wells, G. A., Gill, S., Cameron, C. & Jonker, D. J. Chemotherapy regimens for advanced pancreatic cancer: a systematic review and network meta-analysis. BMC Cancer 14, 471 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Ihse, I. et al. [Guidelines for management of patients with pancreatic cancer]. Lakartidningen 99, 1676–1680, 1683–1685 (2002).

    PubMed  Google Scholar 

  9. Shipley, L. A. et al. Metabolism and disposition of gemcitabine, and oncolytic deoxycytidine analog, in mice, rats, and dogs. Drug Metab. Dispos. 20, 849–855 (1992).

    CAS  PubMed  Google Scholar 

  10. de Sousa Cavalcante, L. & Monteiro, G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 741C, 8–16 (2014).

    Google Scholar 

  11. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ju, H. Q. et al. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol. Cancer Ther. 14, 788–798 (2015).

    CAS  PubMed  Google Scholar 

  13. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    CAS  PubMed  Google Scholar 

  14. Zagouri, F. et al. Molecularly targeted therapies in metastatic pancreatic cancer: a systematic review. Pancreas 42, 760–773 (2013).

    CAS  PubMed  Google Scholar 

  15. Xie, D. & Xie, K. Pancreatic cancer stromal biology and therapy. Genes Dis. 2, 133–143 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stylianopoulos, T. & Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl Acad. Sci. USA 110, 18632–18637 (2013).

    CAS  PubMed  Google Scholar 

  17. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. de Souza, P. C., Ranjan, A. & Towner, R. A. Nanoformulations for therapy of pancreatic and liver cancers. Nanomed. (Lond.) 10, 1515–1534 (2015).

    Google Scholar 

  19. Celia, C., Cosco, D., Paolino, D. & Fresta, M. Gemcitabine-loaded innovative nanocarriers versus GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. Expert Opin. Drug Deliv. 8, 1609–1629 (2011).

    CAS  PubMed  Google Scholar 

  20. Lee, G. Y. et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7, 2078–2089 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin-Banderas, L. et al. Biocompatible gemcitabine-based nanomedicine engineered by flow focusing for efficient antitumor activity. Int. J. Pharm. 443, 103–109 (2013).

    CAS  PubMed  Google Scholar 

  22. Papa, A. L. et al. Mechanistic studies of gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 12, 419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Poplin, E. et al. Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J. Clin. Oncol. 31, 4453–4461 (2013).

    CAS  PubMed  Google Scholar 

  24. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldstein, D. et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl Cancer Inst. 107, dju413 (2015).

    PubMed  Google Scholar 

  26. Neesse, A., Michl, P., Tuveson, D. A. & Ellenrieder, V. nab-Paclitaxel: novel clinical and experimental evidence in pancreatic cancer. Z. Gastroenterol. 52, 360–366 (2014).

    CAS  PubMed  Google Scholar 

  27. Frese, K. K. et al. nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2, 260–269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffman, R. M. & Bouvet, M. Nanoparticle albumin-bound-paclitaxel: a limited improvement under the current therapeutic paradigm of pancreatic cancer. Expert Opin. Pharmacother. 16, 943–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang-Gillam, A. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet, 387 545–557 (2015).

    PubMed  Google Scholar 

  32. Chen, L. T. et al. Expanded analyses of napoli-1: Phase 3 study of MM-398 (nal-IRI), with or without 5-fluorouracil and leucovorin, versus 5-fluorouracil and leucovorin, in metastatic pancreatic cancer (mPAC) previously treated with gemcitabine-based therapy [abstract 234]. J. Clin. Oncol. 33 (Suppl. 3) (2015).

    Google Scholar 

  33. Stylianopoulos, T. & Jain, R. K. Design considerations for nanotherapeutics in oncology. Nanomedicine 11, 1893–1907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Von Hoff, D. et al. NAPOLI-1: randomized phase 3 study of MM-398 (NAL-IRI) with or without 5-fluorouracil and leucovorin, versus 5-fluorouracil and leucovorin, in metastatic pancreatic cancer progressed on or following gemcitabine-based therapy [abstract O–0003]. Ann. Oncol. 25, ii105–ii106 (2014).

    Google Scholar 

  35. Desai, N. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 12, 1317–1324 (2006).

    CAS  PubMed  Google Scholar 

  36. Kalra, A. V. et al. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 74, 7003–7013 (2014).

    CAS  PubMed  Google Scholar 

  37. Yoo, C. et al. A randomised phase II study of modified FOLFIRI.3 versus modified FOLFOX as second-line therapy in patients with gemcitabine-refractory advanced pancreatic cancer. Br. J. Cancer 101, 1658–1663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gebbia, V. et al. Irinotecan plus bolus/infusional 5-fluorouracil and leucovorin in patients with pretreated advanced pancreatic carcinoma: a multicenter experience of the Gruppo Oncologico Italia Meridionale. Am. J. Clin. Oncol. 33, 461–464 (2010).

    CAS  PubMed  Google Scholar 

  39. Oberstein, P. E. & Olive, K. P. Pancreatic cancer: why is it so hard to treat? Therap Adv. Gastroenterol. 6, 321–337 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    CAS  PubMed  Google Scholar 

  41. Koay, E. J. et al. Transport properties of pancreatic cancer describe gemcitabine delivery and response. J. Clin. Invest. 124, 1525–1536 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koay, E. J. et al. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer. Phys. Biol. 11, 065002 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Lee, Y. et al. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial–mesenchymal transition in pancreatic cancer cells. PLoS ONE 9, e107973 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Farrell, J. J. et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136, 187–195 (2009).

    PubMed  Google Scholar 

  45. Spratlin, J. L. & Mackey, J. R. Human equilibrative nucleoside transporter 1 (hENT1) in pancreatic adenocarcinoma: towards individualized treatment decisions. Cancers (Basel) 2, 2044–2054 (2010).

    CAS  Google Scholar 

  46. Stuurman, F. E. et al. A phase 1 comparative pharmacokinetic and cardiac safety study of two intravenous formulations of CO-101 in patients with advanced solid tumors. J. Clin. Pharmacol. 53, 878–883 (2013).

    CAS  PubMed  Google Scholar 

  47. Venugopal, B. et al. A first-in-human phase I and pharmacokinetic study of CP-4126 (CO-101), a nucleoside analogue, in patients with advanced solid tumours. Cancer Chemother. Pharmacol. 76, 785–792 (2015).

    CAS  PubMed  Google Scholar 

  48. Greenhalf, W. et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J. Natl Cancer Inst. 106, djt347 (2014).

    PubMed  Google Scholar 

  49. Ohmine, K. et al. Quantitative targeted proteomics of pancreatic cancer: deoxycytidine kinase protein level correlates to progression-free survival of patients receiving gemcitabine treatment. Mol. Pharm. 12, 3282–3291 (2015).

    CAS  PubMed  Google Scholar 

  50. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01276613?term=nct01276613&rank=1 (2011).

  51. Gleeson, F. C. et al. Targeted next generation sequencing of endoscopic ultrasound acquired cytology from ampullary and pancreatic adenocarcinoma has the potential to aid patient stratification for optimal therapy selection. Oncotarget http://dx.doi.org/10.18632/oncotarget.9440 (2016).

  52. Valetti, S. et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J. Control Release 192, 29–39 (2014).

    CAS  PubMed  Google Scholar 

  53. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    CAS  PubMed  Google Scholar 

  54. Meng, H. et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540–3557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rejiba, S. et al. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine 7, 841–849 (2011).

    CAS  PubMed  Google Scholar 

  56. Aryal, S., Hu, C. M. & Zhang, L. Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small 6, 1442–1448 (2010).

    CAS  PubMed  Google Scholar 

  57. Furukawa, T. Molecular targeting therapy for pancreatic cancer: current knowledge and perspectives from bench to bedside. J. Gastroenterol. 43, 905–911 (2008).

    CAS  PubMed  Google Scholar 

  58. Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Falasca, M., Selvaggi, F., Buus, R., Sulpizio, S. & Edling, C. E. Targeting phosphoinositide 3-kinase pathways in pancreatic cancer — from molecular signalling to clinical trials. Anticancer Agents Med. Chem. 11, 455–463 (2011).

    CAS  PubMed  Google Scholar 

  60. Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 4, 64 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y. & Adjei, A. A. The clinical development of MEK inhibitors. Nat. Rev. Clin. Oncol. 11, 385–400 (2014).

    CAS  PubMed  Google Scholar 

  62. Rosow, D. E. et al. Sonic Hedgehog in pancreatic cancer: from bench to bedside, then back to the bench. Surgery 152, S19–S32 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Collins, M. A. & Pasca di Magliano, M. Kras as a key oncogene and therapeutic target in pancreatic cancer. Front. Physiol. 4, 407 (2013).

    PubMed  Google Scholar 

  64. De Duve, C. The lysosome. Sci. Am. 208, 64–72 (1963).

    CAS  PubMed  Google Scholar 

  65. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007).

    CAS  PubMed  Google Scholar 

  68. Hruban, R. H. et al. K-Ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am. J. Pathol. 143, 545–554 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramos, J. W. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol. 40, 2707–2719 (2008).

    CAS  PubMed  Google Scholar 

  70. Hemmings, B. A. & Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol. 4, a011189 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. Campbell, P. M. et al. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res. 67, 2098–2106 (2007).

    CAS  PubMed  Google Scholar 

  72. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    CAS  PubMed  Google Scholar 

  75. Rao, S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 22, 3950–3957 (2004).

    CAS  PubMed  Google Scholar 

  76. Riely, G. J. et al. A phase II trial of salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac Oncol. 6, 1435–1437 (2011).

    PubMed  Google Scholar 

  77. Van Cutsem, E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 22, 1430–1438 (2004).

    CAS  PubMed  Google Scholar 

  78. Zeng, L. et al. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomedicine 10, 463–472 (2014).

    CAS  PubMed  Google Scholar 

  79. Khvalevsky, E. Z. et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20723–20728 (2013).

    CAS  Google Scholar 

  80. Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6, 24560–24570 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Schultheis, B. et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32, 4141–4148 (2014).

    CAS  PubMed  Google Scholar 

  82. Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015).

    CAS  PubMed  Google Scholar 

  83. Gracián, A. C., Pascual, J. R. & Medina, M. H. Epidermal growth factor receptor as a target in pancreatic cancer. Cancer Chemother. Rev. 3, 223–229 (2008).

    Google Scholar 

  84. Kelley, R. K. & Ko, A. H. Erlotinib in the treatment of advanced pancreatic cancer. Biologics 2, 83–95 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Han, S. W. et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin. Cancer Res. 12, 2538–2544 (2006).

    CAS  PubMed  Google Scholar 

  86. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Peeters, M. et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J. Clin. Oncol. 31, 759–765 (2013).

    CAS  PubMed  Google Scholar 

  88. Kim, S. T. et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol. Cancer Ther. 10, 1993–1999 (2011).

    CAS  PubMed  Google Scholar 

  89. Maya, S. et al. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr. Polym. 93, 661–669 (2013).

    CAS  PubMed  Google Scholar 

  90. Xiangbao, Y. et al. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed. Pharmacother. 68, 597–602 (2014).

    PubMed  Google Scholar 

  91. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  93. Hebrok, M. Hedgehog signaling in pancreas development. Mech. Dev. 120, 45–57 (2003).

    CAS  PubMed  Google Scholar 

  94. Heretsch, P., Tzagkaroulaki, L. & Giannis, A. Modulators of the hedgehog signaling pathway. Bioorg. Med. Chem. 18, 6613–6624 (2010).

    CAS  PubMed  Google Scholar 

  95. Pan, Y., Bai, C. B., Joyner, A. L. & Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 26, 3365–3377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Onishi, H. & Katano, M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J. Gastroenterol. 20, 2335–2342 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Stanton, B. Z. & Peng, L. F. Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol. Biosyst 6, 44–54 (2010).

    CAS  PubMed  Google Scholar 

  98. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Herter-Sprie, G. S., Kung, A. L. & Wong, K. K. New cast for a new era: preclinical cancer drug development revisited. J. Clin. Invest. 123, 3639–3645 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Catenacci, D. V. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01383538?term=nct01383538&rank=1 (2011).

  103. Suker, M. et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 17, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chenna, V. et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol. Cancer Ther. 11, 165–173 (2012).

    CAS  PubMed  Google Scholar 

  105. Chitkara, D. et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol. Pharm. 9, 2350–2357 (2012).

    CAS  PubMed  Google Scholar 

  106. Stern, S. T., Adiseshaiah, P. P. & Crist, R. M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9, 20 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383–1435 (2010).

    CAS  PubMed  Google Scholar 

  108. White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–516 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Eng, C. H. et al. Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc. Natl Acad. Sci. USA 113, 182–187 (2016).

    CAS  PubMed  Google Scholar 

  111. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hashimoto, D. et al. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur. J. Cancer 50, 1382–1390 (2014).

    CAS  PubMed  Google Scholar 

  113. Wolpin, B. M. et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19, 637–638 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Macintosh, R. L. & Ryan, K. M. Autophagy in tumour cell death. Semin. Cancer Biol. 23, 344–351 (2013).

    CAS  PubMed  Google Scholar 

  115. Jenks, S. AACR highlights: promise for treating pancreatic cancer. J. Natl Cancer Inst. 103, 786–787 (2011).

    PubMed  Google Scholar 

  116. Gomez, V. E., Giovannetti, E. & Peters, G. J. Unraveling the complexity of autophagy: potential therapeutic applications in pancreatic ductal adenocarcinoma. Semin. Cancer Biol. 35, 11–19 (2015).

    CAS  PubMed  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01494155?term=01494155&rank=1 (2011).

  118. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01506973?term=01506973&rank=1 (2012).

  119. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01128296?term=01128296&rank=1 (2010).

  120. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01978184?term=01978184&rank=1 (2013).

  121. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01777477?termNCT01777477&rank=1 (2013).

  122. Moore, B. R. et al. Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model. Antimicrob. Agents Chemother. 55, 3899–3907 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Adelusi, S. A. & Salako, L. A. Tissue and blood concentrations of chloroquine following chronic administration in the rat. J. Pharm. Pharmacol. 34, 733–735 (1982).

    CAS  PubMed  Google Scholar 

  124. Bajpai, A. K. & Choubey, J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J. Mater. Sci. Mater. Med. 17, 345–358 (2006).

    CAS  PubMed  Google Scholar 

  125. Joshi, P. et al. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf. B Biointerfaces 95, 195–200 (2012).

    CAS  PubMed  Google Scholar 

  126. Adiseshaiah, P. P. et al. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models. Cancer Lett. 337, 254–265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rangwala, R. et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391–1402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Klein, K. et al. Role of TFEB-driven autophagy regulation in pancreatic cancer treatment. Int. J. Oncol. 49, 164–172 (2016).

    CAS  PubMed  Google Scholar 

  129. Pardo, R. et al. Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology 10, 19–26 (2010).

    CAS  PubMed  Google Scholar 

  130. Cowan, R. W. & Maitra, A. Genetic progression of pancreatic cancer. Cancer J. 20, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  131. Rucki, A. A. & Zheng, L. Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies. World J. Gastroenterol. 20, 2237–2246 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C. & Andersson, R. Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology 10, 673–681 (2010).

    CAS  PubMed  Google Scholar 

  133. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    CAS  PubMed  Google Scholar 

  135. Cassidy, J. W., Caldas, C. & Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75, 2963–2968 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Choi, S. Y. et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 79–80, 222–237 (2014).

    PubMed  Google Scholar 

  137. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. De Jesus-Acosta, A. et al. A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA) [abstract 257]. J. Clin. Oncol. 32 (2014).

  140. Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    CAS  PubMed  Google Scholar 

  141. Lee, J. J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl Acad. Sci. USA 111, E3091–E3100 (2014).

    CAS  PubMed  Google Scholar 

  142. Bever, K. M. et al. The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB (Oxford) 17, 292–298 (2015).

    Google Scholar 

  143. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01839487?term=NCT01839487&rank=1 (2013).

  144. Hingorani, S. R. et al. High response rate and PFS with PEGPH20 added to nab-paclitaxel/gemcitabine in stage IV previously untreated pancreatic cancer patients with high-HA tumors: interim results of a randomized phase II study [abstract 4006]. J. Clin. Oncol. 33 (2015).

  145. Chauhan, V. P. & Jain, R. K. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Halford, S. et al. A phase II study evaluating the tolerability and efficacy of CAELYX (liposomal doxorubicin, Doxil) in the treatment of unresectable pancreatic carcinoma. Ann. Oncol. 12, 1399–1402 (2001).

    CAS  PubMed  Google Scholar 

  147. Ma, W. W. & Hidalgo, M. The winning formulation: the development of paclitaxel in pancreatic cancer. Clin. Cancer Res. 19, 5572–5579 (2013).

    CAS  PubMed  Google Scholar 

  148. Nakai, Y. et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br. J. Cancer 103, 1644–1648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01821729?term=NCT01821729&rank=1 (2013).

  150. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

    CAS  PubMed  Google Scholar 

  152. Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, N. et al. Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J. Clin. Pharmacol. 54, 1097–1107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shea, J. E., Nam, K. H., Rapoport, N. & Scaife, C. L. Genexol inhibits primary tumour growth and metastases in gemcitabine-resistant pancreatic ductal adenocarcinoma. HPB (Oxford) 13, 153–157 (2011).

    Google Scholar 

  155. Saif, M. W. et al. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Invest. 28, 186–194 (2010).

    CAS  PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02739633 (2013).

  157. Saito, Y., Yasunaga, M., Kuroda, J., Koga, Y. & Matsumura, Y. Enhanced distribution of NK012, a polymeric micelle-encapsulated SN-38, and sustained release of SN-38 within tumors can beat a hypovascular tumor. Cancer Sci. 99, 1258–1264 (2008).

    CAS  PubMed  Google Scholar 

  158. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    CAS  PubMed  Google Scholar 

  159. Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    CAS  PubMed  Google Scholar 

  160. Kano, M. R. et al. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 100, 173–180 (2009).

    CAS  PubMed  Google Scholar 

  161. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    CAS  PubMed  Google Scholar 

  162. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  163. Sahora, K. et al. A phase II trial of two durations of Bevacizumab added to neoadjuvant gemcitabine for borderline and locally advanced pancreatic cancer. Anticancer Res. 34, 2377–2384 (2014).

    CAS  PubMed  Google Scholar 

  164. Tian, W. et al. Efficacy and safety profile of combining agents against epidermal growth factor receptor or vascular endothelium growth factor receptor with gemcitabine-based chemotherapy in patients with advanced pancreatic cancer: a meta-analysis. Pancreatology 13, 415–422 (2013).

    CAS  PubMed  Google Scholar 

  165. Crane, C. H. et al. Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J. Clin. Oncol. 27, 4096–4102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Baxter, L. T. & Jain, R. K. Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution. Microvasc. Res. 41, 252–272 (1991).

    CAS  PubMed  Google Scholar 

  167. Lieleg, O., Baumgartel, R. M. & Bausch, A. R. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys. J. 97, 1569–1577 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stylianopoulos, T. et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99, 1342–1349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl Med. 4, 128ra39 (2012).

    PubMed  Google Scholar 

  170. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Garrido-Laguna, I. & Hidalgo, M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat. Rev. Clin. Oncol. 12, 319–334 (2015).

    CAS  PubMed  Google Scholar 

  172. Chauhan, V. P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    CAS  PubMed  Google Scholar 

  174. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  175. Adiseshaiah, P. P., Hall, J. B. & McNeil, S. E. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 99–112 (2010).

    CAS  PubMed  Google Scholar 

  176. Phillips, P. A. et al. Cell migration: a novel aspect of pancreatic stellate cell biology. Gut 52, 677–682 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, J., Wientjes, M. G. & Au, J. L. Pancreatic cancer: pathobiology, treatment options, and drug delivery. AAPS J. 12, 223–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Dobrovolskaia, M. A. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J. Control Release 220, 571–583 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    CAS  PubMed  Google Scholar 

  180. McNeil, S. E. Nanoparticle therapeutics: a personal perspective. WIREs Nanomed. Nanobiotechnol. 1, 264–271 (2009).

    CAS  Google Scholar 

  181. Ramanathan, R. K. et al. A phase I dose escalation study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors [abstract LB-289]. Cancer Res. 73 (2013).

    Google Scholar 

  182. Mahalingam, D. et al. Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 74, 1241–1250 (2014).

    CAS  PubMed  Google Scholar 

  183. Mita, M. et al. A phase 1 study of BIND-014, a PSMA-targeted nanoparticle containing docetaxel, administered to patients with refractory solid tumors on a weekly schedule [abstract CT210]. Cancer Res. 74 (2014).

    Google Scholar 

  184. Deeken, J. F. et al. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol. 71, 627–633 (2013).

    CAS  PubMed  Google Scholar 

  185. NanoCarrier. Results of Asia phase I/II clinical study of NC-6004Nanoplatin® presented at Japanese Cancer Association Meeting. http://pdf.irpocket.com/C4571/GpH7/xajp/i7aV.pdf (2013).

Download references

Acknowledgements

The authors thank Dr Stephan T. Stern and Dr Jennifer H. Grossman for their critical review of the manuscript, and Allen Kane of Leidos Biomedical Research for assistance with graphic illustrations. The work of P.P.A., R.M.C., and S.E.M. has been funded, in whole or in part, by Federal funds from the Frederick National Laboratory for Cancer Research, US NIH, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

P.P.A. researched the data for the article and wrote the manuscript. R.M.C. assisted with drafting of the manuscript. All authors contributed to discussions of content and reviewed and/or edited manuscript before submission.

Corresponding author

Correspondence to Pavan P. Adiseshaiah.

Ethics declarations

Competing interests

P.P.A., R.M.C, and S.E.M. are employees of Leidos Biomedical Research, the operations and technical support contractor for the Frederick National Laboratory for Cancer Research. S.S.H. declares no competing interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiseshaiah, P., Crist, R., Hook, S. et al. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 13, 750–765 (2016). https://doi.org/10.1038/nrclinonc.2016.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.119

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research