Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-invasive metabolic imaging of brain tumours in the era of precision medicine

Key Points

  • Brain tumours, such as gliomas, in adults and children are morphologically similar, but harbour different genomic alterations, both across and within histological subtypes, that affect prognosis and treatment response

  • Many of these genomic alterations lead to reprogramming of cellular metabolism, including glucose, amino acid, and lipid metabolism

  • The metabolic reprogramming in brain tumours can be visualized and assessed using various non-invasive clinical imaging modalities

  • Metabolic imaging shows great promise as a means to non-invasively evaluate some of the genomic alterations in order to guide the clinical management of patients

Abstract

The revolution in cancer genomics has uncovered a variety of clinically relevant mutations in primary brain tumours, creating an urgent need to develop non-invasive imaging biomarkers to assess and integrate this genetic information into the clinical management of patients. Metabolic reprogramming is a central hallmark of cancer, including brain tumours; indeed, many of the molecular pathways implicated in the pathogenesis of brain tumours result in reprogramming of metabolism. This relationship provides the opportunity to devise in vivo metabolic imaging modalities to improve diagnosis, patient stratification, and monitoring of treatment response. Metabolic phenomena, such as the Warburg effect and altered mitochondrial metabolism, can be leveraged to image brain tumours using techniques including PET and MRI. Moreover, genetic alterations, such as mutations affecting isocitrate dehydrogenase, are associated with unique metabolic signatures that can be detected using magnetic resonance spectroscopy. The need to translate our understanding of the molecular features of brain tumours into imaging modalities with clinical utility is growing; metabolic imaging provides a unique platform to achieve this objective. In this Review, we examine the molecular basis for metabolic reprogramming in brain tumours, and examine current non-invasive metabolic imaging strategies that can be used to interrogate these molecular characteristics with the ultimate goal of guiding and improving patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oncogenic reprogramming and imaging of glycolysis in brain tumours.
Figure 2: Oncogenic reprogramming and imaging of tricarboxylic acid (TCA)-cycle-related fatty acid and amino acid metabolism.
Figure 3: Axial PET images of glioblastoma with 2-deoxy-2-[18F]fluoro-D-deoxyglucose (18F-FDG).
Figure 4: Axial PET images of glioma with (2S,4R)-4-[18F]fluoro-l-glutamine (18F-FGln).
Figure 5: Axial PET imaging using 11C-labelled methionine in a patient with glioblastoma.
Figure 6: 1H magnetic resonance spectroscopy (1H-MRS) imaging in a patient with bifrontal glioblastoma treated with chemoradiotherapy.

Similar content being viewed by others

References

  1. Louis, D. N. et al. World Health Organization Classification of Tumors of the Central Nervous Systemrevised 4th edn (International Agency for Research on Cancer (IARC), 2016).

    Google Scholar 

  2. Peng, B. H. & Levin, C. S. Recent development in PET instrumentation. Curr. Pharm. Biotechnol. 11, 555–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2016.60 (2016).

  4. Glunde, K. & Bhujwalla, Z. M. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin. Oncol. 38, 26–41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  9. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Khuong-Quang, D. A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venneti, S. & Huse, J. T. The evolving molecular genetics of low-grade glioma. Adv. Anat. Pathol. 22, 94–101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Remke, M., Ramaswamy, V. & Taylor, M. D. Medulloblastoma molecular dissection: the way toward targeted therapy. Curr. Opin. Oncol. 25, 674–681 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gajjar, A. J. & Robinson, G. W. Medulloblastoma-translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol. 11, 714–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Robinson, G. W. et al. Vismodegib exerts targeted efficacy against recurrent Sonic Hedgehog-subgroup medulloblastoma: results from phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33, 2646–2654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, G. W., Orr, B. A. & Gajjar, A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14, 258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bautista, F. et al. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr. Blood Cancer 61, 1101–1103 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Rush, S., Foreman, N. & Liu, A. Brainstem ganglioglioma successfully treated with vemurafenib. J. Clin. Oncol. 31, e159–e160 (2013).

    Article  PubMed  Google Scholar 

  21. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maher, E. A. et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 25, 1234–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Baumann, F. et al. Lactate promotes glioma migration by TGF-β2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 11, 368–380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colen, C. B. et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13, 620–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crane, C. A. et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl Acad. Sci. USA 111, 12823–12828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohn, A. D., Summers, S. A., Birnbaum, M. J. & Roth, R. A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. & Rider, M. H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269–17275 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Babic, I. et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 17, 1000–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, S. et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 14, 131–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Parmenter, T. J. et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov. 4, 423–433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Wolf, A., Agnihotri, S., Munoz, D. & Guha, A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol. Dis. 44, 84–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Wolf, A. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208, 313–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gershon, T. R. et al. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab. 1, 2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Magno, L. et al. Druggable glycolytic requirement for Hedgehog-dependent neuronal and medulloblastoma growth. Cell Cycle 13, 3404–3413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kefas, B. et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 12, 1102–1112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukherjee, J. et al. Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma. PLoS ONE 8. e57610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witney, T. H. et al. PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci. Transl. Med. 7, 310ra169 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Kelloff, G. J. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Patronas, N. J. et al. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg. 62, 816–822 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Colavolpe, C. et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J. Neurooncol 107, 527–535 (2011).

    Article  PubMed  Google Scholar 

  47. Omuro, A. M. P., Leite, C. C., Mokhtari, K. & Delattre, J.-Y. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 5, 937–948 (2006).

    Article  PubMed  Google Scholar 

  48. Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurhanewicz, J., Bok, R., Nelson, S. J. & Vigneron, D. B. Current and potential applications of clinical 13C MR spectroscopy. J. Nucl. Med. 49, 341–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, I. et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol. 12, 133–144 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Zijl, P. C. & Yadav, N. N. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn. Reson. Med. 65, 927–948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gizewski, E. R., Monninghoff, C. & Forsting, M. Perspectives of ultra-high-field MRI in neuroradiology. Clin. Neuroradiol. 25 (Suppl. 2), 267–273 (2015).

    Article  PubMed  Google Scholar 

  54. Shah, N. J. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct. Funct. 220, 1867–1884 (2015).

    Article  PubMed  Google Scholar 

  55. Cai, K. et al. The impact of gabapentin administration on brain GABA and glutamate concentrations: a 7T 1H-MRS study. Neuropsychopharmacology 37, 2764–2771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren, J., Sherry, A. D. & Malloy, C. R. A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T. NMR Biomed. http://dx.doi.org/10.1002/nbm.3310 (2015).

  57. Duyn, J. H. The future of ultra-high field MRI and fMRI for study of the human brain. NeuroImage 62, 1241–1248 (2012).

    Article  PubMed  Google Scholar 

  58. Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sagiyama, K. et al. In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc. Natl Acad. Sci. USA 111, 4542–4547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Puttick, S., Bell, C., Dowson, N., Rose, S. & Fay, M. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov. Today 20, 306–317 (2015).

    Article  PubMed  Google Scholar 

  61. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venneti, S. et al. in American Association of Neuorpathologists (Journal of Neuropathology & Experimental Neurology, 2012).

    Google Scholar 

  69. Choi, C. et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18, 624–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andronesi, O. C. et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4, 116ra4 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Emir, U. E. et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res. 76, 43–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Bertolino, N. et al. Accuracy of 2-hydroxyglutarate quantification by short-echo proton-MRS at 3 T: a phantom study. Phys. Med. 30, 702–707 (2014).

    Article  PubMed  Google Scholar 

  73. Natsumeda, M. et al. Accumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy. Acta Neuropathol. Commun. 2, 158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hartmann, C. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 120, 707–718 (2010).

    Article  PubMed  Google Scholar 

  75. de la Fuente, M. I. et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol. 18, 283–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Chaumeil, M. M. et al. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat. Commun. 4, 2429 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. Chawla, S. et al. Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas. J. Neuroimaging 20, 3–8 (2010).

    Article  PubMed  Google Scholar 

  78. Chawla, S. et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am. J. Neuroradiol. 28, 1683–1689 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Majos, C. et al. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am. J. Neuroradiol. 25, 1696–1704 (2004).

    PubMed  PubMed Central  Google Scholar 

  80. Wilson, M. et al. Noninvasive detection of glutamate predicts survival in pediatric medulloblastoma. Clin. Cancer Res. 20, 4532–4539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koglin, N. et al. Specific PET imaging of xC- transporter activity using a 18F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism. Clin. Cancer Res. 17, 6000–6011 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Baek, S. et al. Exploratory clinical trial of (4S)-4- (3-[18F]fluoropropyl)-l-glutamate for imaging xC transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin. Cancer Res. 18, 5427–5437 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Takeuchi, S. et al. Increased xCT expression correlates with tumor invasion and outcome in patients with glioblastomas. Neurosurgery 72, 33–41; discussion 41 (2013).

    Article  PubMed  Google Scholar 

  84. Sleire, L. et al. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc, leading to glutathione depletion. Oncogene 34, 5951–5959 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venneti, S. et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7, 274ra17 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Daye, D. & Wellen, K. E. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23, 362–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qing, G. et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, C. et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife 5, e10727 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Muzi, M. et al. Kinetic analysis of 3′-deoxy-3′-18F- fluorothymidine in patients with gliomas. J. Nucl. Med. 47, 1612–1621 (2006).

    CAS  PubMed  Google Scholar 

  97. Gulyas, B., Nyary, I. & Borbely, K. F.D. G. MET or CHO? The quest for the optimal PET tracer for glioma imaging continues. Nat. Clin. Pract. Neurol. 4, 470–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yun, J., Johnson, J. L., Hanigan, C. L. & Locasale, J. W. Interactions between epigenetics and metabolism in cancers. Front. Oncol. 2, 163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Roelcke, U. et al. Alteration of blood–brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET. J. Neurol. Sci. 132, 20–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Sasajima, T. et al. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines. Eur. J. Nuclear Med. Mol. Imaging 31, 1244–1256 (2004).

    Article  CAS  Google Scholar 

  102. Glaudemans, A. W. J. M. et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nuclear Med. Mol. Imaging 40, 615–635 (2012).

    Article  CAS  Google Scholar 

  103. Ariyannur, P. S., Madhavarao, C. N. & Namboodiri, A. M. N-acetylaspartate synthesis in the brain: mitochondria versus microsomes. Brain Res. 1227, 34–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Rigotti, D. J., Inglese, M. & Gonen, O. Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am. J. Neuroradiol. 28, 1843–1849 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baslow, M. H. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem. Res. 28, 941–953 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Goldstein, F. B. Biosynthesis of N-acetyl-l-aspartic acid. Biochim. Biophys. Acta 33, 583–584 (1959).

    Article  CAS  PubMed  Google Scholar 

  107. Moffett, J., Ross, B., Arun, P., Madhavarao, C. & Namboodiri, A. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Juhasz, C., Dwivedi, S., Kamson, D. O., Michelhaugh, S. K. & Mittal, S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol. Imaging http://dx.doi.org/10.2310/7290.2014.00015 (2014).

  109. Dunet, V., Rossier, C., Buck, A., Stupp, R. & Prior, J. O. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J. Nucl. Med. 53, 207–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Jansen, N. L. et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro Oncol. 14, 1473–1480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thon, N. et al. Dynamic 18F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int. J. Cancer 136, 2132–2145 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Dolma, S. et al. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29, 859–873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ishiwata, K. et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J. Nucl. Med. 34, 1936–1943 (1993).

    CAS  PubMed  Google Scholar 

  114. Kinoshita, Y. & Yokota, A. Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 10, 2–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Nelson, S. J. et al. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J. Magn. Reson. Imaging 16, 464–476 (2002).

    Article  PubMed  Google Scholar 

  116. Chernov, M. F. et al. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 23, 19–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Guo, D. et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2, ra82 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    Article  CAS  Google Scholar 

  120. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    Article  CAS  Google Scholar 

  121. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yamamoto, Y. et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol. Imaging Biol. 10, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Yamane, T., Sakamoto, S. & Senda, M. Clinical impact of 11C-methionine PET on expected management of patients with brain neoplasm. Eur. J. Nucl. Med. Mol. Imaging 37, 685–690 (2010).

    Article  PubMed  Google Scholar 

  126. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4, 1334–1336 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Bading, J. R. & Shields, A. F. Imaging of cell proliferation: status and prospects. J. Nucl. Med. 49 (Suppl. 2), 64S–80S (2008).

    Article  CAS  PubMed  Google Scholar 

  128. McKinley, E. T. et al. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS ONE 8, e58938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, W. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  130. Jacobs, A. H. et al. 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J. Nucl. Med. 46, 1948–1958 (2005).

    CAS  PubMed  Google Scholar 

  131. Ackerman, D. & Simon, M. C. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 24, 472–478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, S. T. & Scott, A. M. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin. Nucl. Med. 37, 451–461 (2007).

    Article  PubMed  Google Scholar 

  133. Bruehlmeier, M., Roelcke, U., Schubiger, P. A. & Ametamey, S. M. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med. 45, 1851–1859 (2004).

    PubMed  Google Scholar 

  134. Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Haubner, R., Beer, A. J., Wang, H. & Chen, X. Positron emission tomography tracers for imaging angiogenesis. Eur. J. Nucl. Med. Mol. Imaging 37, S86–S103 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Schnell, O. et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol. 11, 861–870 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tsien, C. I. et al. Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin. Cancer Res. 18, 273–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kunz, M. et al. Hot spots in dynamic 18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 13, 307–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Arbizu, J. et al. Quantitative volumetric analysis of gliomas with sequential MRI and 11C-methionine PET assessment: patterns of integration in therapy planning. Eur. J. Nucl. Med. Mol. Imaging 39, 771–781 (2012).

    Article  PubMed  Google Scholar 

  140. Pirotte, B. et al. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact. Funct. Neurosurg. 63, 144–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Tanaka, Y. et al. Glioma surgery using a multimodal navigation system with integrated metabolic images. J. Neurosurg. 110, 163–172 (2009).

    Article  PubMed  Google Scholar 

  142. Di Costanzo, A. et al. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48, 622–631 (2006).

    Article  PubMed  Google Scholar 

  143. Pafundi, D. H. et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 15, 1058–1067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ledezma, C. J. et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: Initial experience. Eur. J. Radiol. 71, 242–248 (2009).

    Article  PubMed  Google Scholar 

  145. Chen, W. et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 47, 904–911 (2006).

    CAS  PubMed  Google Scholar 

  146. Singhal, T., Narayanan, T. K., Jacobs, M. P., Bal, C. & Mantil, J. C. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J. Nucl. Med. 53, 1709–1715 (2012).

    Article  PubMed  Google Scholar 

  147. Jansen, N. L. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J. Nucl. Med. 55, 198–203 (2013).

    Article  PubMed  CAS  Google Scholar 

  148. Galldiks, N. et al. Role of O-(2-18F-fluoroethyl)-l-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J. Nucl. Med. 54, 2046–2054 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Galldiks, N. et al. Volumetry of [11C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol. Imaging 11, 516–527 (2012).

    CAS  PubMed  Google Scholar 

  150. Suchorska, B. et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84, 710–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Saraswathy, S. et al. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J. Neurooncol. 91, 69–81 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Crawford, F. W. et al. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J. Neurooncol. 91, 337–351 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Andronesi, O. C. et al. Treatment response assessment in IDH-mutant glioma patients by non-invasive 3D functional spectroscopic mapping of 2-Hydroxyglutarate. Clin. Cancer Res. (2015).

  154. Murphy, P. S. et al. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br. J. Cancer 90, 781–786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Warren, K. E. et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J. Clin. Oncol. 18, 1020–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Alexander, A. et al. Prognostic significance of serial magnetic resonance spectroscopies over the course of radiation therapy for patients with malignant glioma. Clin. Invest. Med. 29, 301–311 (2006).

    CAS  PubMed  Google Scholar 

  157. Hattingen, E. et al. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol. 13, 1349–1363 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kim, H. et al. Serial magnetic resonance spectroscopy reveals a direct metabolic effect of cediranib in glioblastoma. Cancer Res. 71, 3745–3752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Galldiks, N. et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 33, 516–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Masui, K. et al. Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proc. Natl Acad. Sci. USA 112, 9406–9411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Tanaka, K. et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest. 125, 1591–1602 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  164. Okamoto, S. et al. Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann. Nucl. Med. 25, 213–220 (2010).

    Article  PubMed  CAS  Google Scholar 

  165. Galldiks, N. et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging 42, 685–695 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Kebir, S. et al. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-l-tyrosine PET. Clin. Cancer Res. 22, 2190–2196 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Herrmann, K. et al. Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro Oncol. 16, 603–609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ullrich, R. T. et al. Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J. Nucl. Med. 50, 1962–1968 (2009).

    Article  PubMed  Google Scholar 

  169. Galldiks, N. et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 17, 1293–1300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Walter, F. et al. Impact of 3,4-dihydroxy-6-18F-fluoro-l-phenylalanine PET/CT on managing patients with brain tumors: the referring physician's perspective. J. Nucl. Med. 53, 393–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Sundgren, P. C. M. R. Spectroscopy in radiation injury. Am. J. Neuroradiol. 30, 1469–1476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rock, J. P. et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51, 912–920 (2002).

    PubMed  Google Scholar 

  173. Horská, A. & Barker, P. B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin. N. Am. 20, 293–310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hekmatyar, S. K. et al. 1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br. J. Cancer 103, 1297–1304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bluml, S. et al. Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy. Neuro Oncol. 18, 126–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Iwadate, Y., Shinozaki, N., Matsutani, T., Uchino, Y. & Saeki, N. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2015-311516 (2016).

  177. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  178. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17 (Suppl. 4), iv1–iv62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thanks Prof. Yue Cao of the Functional Imaging Group in the Department of Radiation Oncology at the University of Michigan Health System, Ann Arbor, Michigan, USA, for providing the imaging scans included in Fig. 6. The work of S.V. is supported by the US NIH National Cancer Institute (grant K08CA181475A), the Mathew Larson Foundation, the Sidney Kimmel Foundation and the Doris Duke Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.M.K. and S.V. researched the data for the article and wrote the manuscript M.M.K., A.P., and S.V. contributed substantially to discussions of the content. M.P.D. contributed figures. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sriram Venneti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Parolia, A., Dunphy, M. et al. Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nat Rev Clin Oncol 13, 725–739 (2016). https://doi.org/10.1038/nrclinonc.2016.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.108

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer