Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using tumour phylogenetics to identify the roots of metastasis in humans

Key Points

  • Whether metastasis tends to occur early or late in tumour development remains controversial, and whether metastases descend directly from the primary tumour or give rise to each other is unclear

  • In the linear progression model, metastatic precursors leave the primary tumour at late stages of disease, after clonal evolution has given rise to a cell with metastatic ability; consequently, primary tumours and metastases are genetically closely related

  • The parallel progression model, on the other hand, assumes that metastasis occurs in early stages of carcinogenesis, and that metastases and primary tumour evolve independently, resulting in genetic disparity between them

  • Comparative genomics studies in different cancer types illustrate a variety of possible progression trajectories for systemic disease, but analysis of more patients is needed to arrive at generalizable conclusions

  • Problems complicating the interpretation of comparative genetics data include the unknown contributions of the tissue-specific background mutational burden, self-seeding and tumour-cell dormancy, and the extensive heterogeneity of primary tumours

  • A variety of experimental approaches beyond next-generation DNA sequencing are available for lineage tracing in human cancer

Abstract

In cancer, much uncertainty remains regarding the origins of metastatic disease. Models of metastatic progression offer competing views on when dissemination occurs (at an early or late stage of tumour development), whether metastases at different sites arise independently and directly from the primary tumour or give rise to each other, and whether dynamic cell exchange occurs between synchronously growing lesions. Although it is probable that many routes can lead to the establishment of systemic disease, clinical observations suggest that distinct modes of metastasis might prevail in different tumour types. Gaining a more-comprehensive understanding of the evolutionary processes that underlie metastasis is not only relevant from a basic biological perspective, but also has profound clinical implications. The 'tree of life' of metastatic cancer contains answers to many outstanding questions about the development of systemic disease, but has only been reconstructed in a limited number of patients. Here we review available data on the phylogenetic relationships between primary solid tumours and their metastases, and examine to what degree they support different models of metastatic progression. We provide a description of experimental methods for lineage tracing in human cancer, ranging from broad DNA-sequencing approaches to more-targeted techniques, and discuss their respective benefits and caveats. Finally, we propose future research questions in the area of cancer phylogenetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of human metastasis models.
Figure 2: The mutational burden of the tumour founder cell might affect interpretation of data from comparative genetics studies.
Figure 3: Using intermediate subclones to search for evidence of tumour self-seeding.
Figure 4: The challenge of proving the parallel progression model of metastasis.

Similar content being viewed by others

References

  1. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Navin, N. E. & Hicks, J. Tracing the tumor lineage. Mol. Oncol. 4, 267–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sankin, A. et al. The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med. http://dx.doi.org/10.1002/cam4.293 (2014).

  7. Simmons, C. et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann. Oncol. 20, 1499–1504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niikura, N. et al. Latest biopsy approach for suspected metastases in patients with breast cancer. Nat. Rev. Clin. Oncol. 10, 711–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weiss, L. Concepts of metastasis. Cancer Metastasis Rev. 19, 219–234 (2000).

    Article  Google Scholar 

  11. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, C. A. Framework models of tumor dormancy from patient-derived observations. Curr. Opin. Genet. Dev. 21, 42–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Hess, K. R., Pusztai, L., Buzdar, A. U. & Hortobagyi, G. N. Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res. Treat. 78, 105–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Tsai, M. S. et al. Clinicopathological features and prognosis in resectable synchronous and metachronous colorectal liver metastasis. Ann. Surg. Oncol. 14, 786–794 (2007).

    Article  PubMed  Google Scholar 

  15. Bragado, P., Sosa, M. S., Keely, P., Condeelis, J. & Aguirre-Ghiso, J. A. Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res. 195, 25–39 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Teng, M. W., Swann, J. B., Koebel, C. M., Schreiber, R. D. & Smyth, M. J. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Bross, I. D., Viadana, E. & Pickren, J. Do generalized metastases occur directly from the primary? J. Chronic Dis. 28, 149–159 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Weinberg, R. A. Mechanisms of malignant progression. Carcinogenesis 29, 1092–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Disibio, G. & French, S. W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    PubMed  Google Scholar 

  24. Hellman, S. Karnofsky Memorial Lecture. Natural history of small breast cancers. J. Clin. Oncol. 12, 2229–2234 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Fisher, B. Laboratory and clinical research in breast cancer—a personal adventure: the David, A. Karnofsky memorial lecture. Cancer Res. 40, 3863–3874 (1980).

    CAS  PubMed  Google Scholar 

  26. Giuliano, A. E. et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasisa randomized clinical trial. JAMA 305, 569–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giuliano, A. E. et al. Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: the American College of Surgeons Oncology Group Z0011 randomized trial. Ann. Surg. 252, 426–432 (2010).

    PubMed  Google Scholar 

  28. Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, M.-Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  PubMed  Google Scholar 

  35. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riethdorf, S., Wikman, H. & Pantel, K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Danila, D. C. et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 7053–7058 (2007).

    CAS  PubMed  Google Scholar 

  39. Krebs, M. G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    Article  PubMed  Google Scholar 

  40. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Alix-Panabières, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weckermann, D. et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J. Clin. Oncol. 27, 1549–1556 (2009).

    Article  PubMed  Google Scholar 

  44. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klein, C. A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brannon, A. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 15, 454 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Letouzé, E., Allory, Y., Bollet, M. A., Radvanyi, F. & Guyon, F. Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis. Genome Biol. 11, R76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haffner, M. C. et al. Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest. 123, 4918–4922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vermaat, J. S. et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin. Cancer Res. 18, 688–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  61. Schmid, K. et al. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin. Cancer Res. 15, 4554–4560 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Colombino, M. et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 30, 2522–2529 (2012).

    Article  PubMed  Google Scholar 

  63. Baldus, S. E. et al. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin. Cancer Res. 16, 790–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Stoecklein, N. H. & Klein, C. A. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int. J. Cancer 126, 589–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl Acad. Sci. USA 110, 1999–2004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  68. Comen, E., Norton, L. & Massagué, J. Clinical implications of cancer self-seeding. Nat. Rev. Clin. Oncol. 8, 369–377 (2011).

    Article  PubMed  Google Scholar 

  69. Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geurts, T. W. et al. Pulmonary squamous cell carcinoma following head and neck squamous cell carcinoma: metastasis or second primary? Clin. Cancer Res. 11, 6608–6614 (2005).

    Article  PubMed  Google Scholar 

  71. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Going, J. J., Abd El-Monem, H. M. & Craft, J. A. Clonal origins of human breast cancer. J. Pathol. 194, 406–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Katona, T. M. et al. Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am. J. Surg. Pathol. 31, 1029–1037 (2007).

    Article  PubMed  Google Scholar 

  78. Novelli, M. et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. USA 100, 3311–3314 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jäger, N. et al. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155, 567–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shibata, D. & Tavaré, S. Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 5, 610–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Shibata, D., Navidi, W., Salovaara, R., Li, Z. H. & Aaltonen, L. A. Somatic microsatellite mutations as molecular tumor clocks. Nat. Med. 2, 676–681 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Nicolas, P., Kim, K. M., Shibata, D. & Tavare, S. The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput. Biol. 3, e28 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yatabe, Y., Tavare, S. & Shibata, D. Investigating stem cells in human colon by using methylation patterns. Proc. Natl Acad. Sci. USA 98, 10839–10844 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Woo, Y. J., Siegmund, K. D., Tavare, S. & Shibata, D. Older individuals appear to acquire mitotically older colorectal cancers. J. Pathol. 217, 483–488 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavare, S. & Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA 106, 4828–4833 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Siegmund, K. D., Marjoram, P., Tavare, S. & Shibata, D. High DNA methylation pattern intratumoral diversity implies weak selection in many human colorectal cancers. PLoS ONE 6, e21657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boyer, J. C. et al. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Hum. Mol. Genet. 11, 707–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Samowitz, W. S. et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev. 10, 917–923 (2001).

    CAS  PubMed  Google Scholar 

  96. Bonadona, V. et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305, 2304–2310 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Tsao, J. L. et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl Acad. Sci. USA 97, 1236–1241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wasserstrom, A. et al. Reconstruction of cell lineage trees in mice. PLoS ONE 3, e1939 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reizel, Y. et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet. 7, e1002192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reizel, Y. et al. Cell lineage analysis of the mammalian female germline. PLoS Genet. 8, e1002477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Frumkin, D. et al. Cell lineage analysis of a mouse tumor. Cancer Res. 68, 5924–5931 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Shlush, L. I. et al. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120, 603–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Salipante, S. J. & Horwitz, M. S. Phylogenetic fate mapping. Proc. Natl Acad. Sci. USA 103, 5448–5453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Salipante, S. J., Kas, A., McMonagle, E. & Horwitz, M. S. Phylogenetic analysis of developmental and postnatal mouse cell lineages. Evol. Dev. 12, 84–94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Salipante, S. J., Thompson, J. M. & Horwitz, M. S. Phylogenetic fate mapping: theoretical and experimental studies applied to the development of mouse fibroblasts. Genetics 178, 967–977 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhou, W. et al. Use of somatic mutations to quantify random contributions to mouse development. BMC Genomics 14, 39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Salk, J. J. & Horwitz, M. S. Passenger mutations as a marker of clonal cell lineages in emerging neoplasia. Semin. Cancer Biol. 20, 294–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Salk, J. J. et al. Clonal expansions in ulcerative colitis identify patients with neoplasia. Proc. Natl Acad. Sci. USA 106, 20871–20876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Naxerova, K. et al. Hypermutable DNA chronicles the evolution of human colon cancer. Proc. Natl Acad. Sci. USA 111, E1889–E1898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shibata, D. Cancer. Heterogeneity and tumor history. Science 336, 304–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Slack, N. H. & Bross, I. D. The influence of site of metastasis on tumour growth and response to chemotherapy. Br. J. Cancer 32, 78–86 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kodack, D. P. et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc. Natl Acad. Sci. USA 109, E3119–E3127 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported in part by funding from the US Department of Defence (grant W81XWH-11-1-0146 to K.N.), the Breast Cancer Innovator Award (grant W81XWH-10-1-0016 to R.K.J.), the US National Institutes of Health (grants P01CA080124 and R01CA163815 to R.K.J.), the Proton Beam/Federal Share Program (R.K.J.), and the National Foundation for Cancer Research (R.K.J.).

Author information

Authors and Affiliations

Authors

Contributions

K.N. and R.K.J. made substantial contributions to discussion of content and review/editing of the manuscript before submission. K.N. researched the data for the article and wrote the manuscript.

Corresponding author

Correspondence to Kamila Naxerova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naxerova, K., Jain, R. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol 12, 258–272 (2015). https://doi.org/10.1038/nrclinonc.2014.238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.238

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer