Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in umbilical cord blood manipulation—from niche to bedside

Key Points

  • Umbilical cord blood (UCB) transplantation is limited by cell doses, especially for adult recipients

  • UCB can be expanded in vitro greater than 500-fold

  • UCB can be 'primed' just before infusion to influence cellular homing

  • Cell expansion or modulation of cell homing can alter engraftment kinetics in recipients

  • These strategies can increase the rapidity of engraftment and the next generation of clinical trials will determine the clinical efficacy of such approaches

Abstract

The use of umbilical cord blood (UCB) as an alternative haematopoietic cell source in lieu of bone marrow for haematopoietic reconstitution is increasingly becoming a mainstay treatment for both malignant and nonmalignant diseases, as most individuals will have at least one available, suitably HLA-matched unit of blood. The principal limitation of UCB is the low and finite number of haematopoietic stem and progenitor cells (HSPC) relative to the number found in a typical bone marrow or mobilized peripheral blood allograft, which leads to prolonged engraftment times. In an attempt to overcome this obstacle, strategies that are often based on native processes occurring in the bone marrow microenvironment or 'niche' have been developed with the goal of accelerating UCB engraftment. In broad terms, the two main approaches have been either to expand UCB HSPC ex vivo before transplantation, or to modulate HSPC functionality to increase the efficiency of HSPC homing to the bone marrow niche after transplant both of which enhance the biological activities of the engrafted HSPC. Several early phase clinical trials of these approaches have reported promising results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Median times to neutrophil engraftment of mobilized PBSC, unrelated donor marrow and single UCB transplants after a myeloablative preparative regimen (transplant is on day 0).
Figure 2: Activities of HSPC required for successful umbilical cord blood engraftment.
Figure 3: General schema of a double UCB transplant platform.
Figure 4: UCB manipulation offers improved time to neutrophil engraftment.

Similar content being viewed by others

References

  1. Kita, K., Lee, J. O., Finnerty, C. C. & Herndon, D. N. Cord blood-derived hematopoietic stem/progenitor cells: current challenges in engraftment, infection, and ex vivo expansion. Stem Cells Int. 2011, 276193 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laughlin, M. J. et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N. Engl. J. Med. 351, 2265–2275 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ballen, K. K., Gluckman, E. & Broxmeyer, H. E. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122, 491–498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Broxmeyer, H. E. et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl Acad. Sci. USA 86, 3828–3832 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calvet, L. et al. Hematologic, immunologic reconstitution, and outcome of 342 autologous peripheral blood stem cell transplantations after cryopreservation in a −80 degrees C mechanical freezer and preserved less than 6 months. Transfusion 53, 570–578 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Davies, S. M. et al. Engraftment and survival after unrelated-donor bone marrow transplantation: a report from the national marrow donor program. Blood 96, 4096–4102 (2000).

    CAS  PubMed  Google Scholar 

  7. Eapen, M. et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J. Clin. Oncol. 22, 4872–4880 (2004).

    Article  PubMed  Google Scholar 

  8. Rubinstein, P. et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N. Engl. J. Med. 339, 1565–1577 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Anasetti, C. et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N. Engl. J. Med. 367, 1487–1496 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Avery, S. et al. Influence of infused cell dose and HLA match on engraftment after double-unit cord blood allografts. Blood 117, 3277–3285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laughlin, M. J. et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N. Engl. J. Med. 344, 1815–1822 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Dexter, T. M., Allen, T. D. & Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335–344 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Broxmeyer, H. E. et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc. Natl Acad. Sci. USA 89, 4109–4113 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabutti, V. et al. Expansion of cord blood progenitors and use for hemopoietic reconstitution. Stem Cells 11 (Suppl. 2), 105–112 (1993).

    PubMed  Google Scholar 

  15. Mayani, H., Dragowska, W. & Lansdorp, P. M. Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 81, 3252–3258 (1993).

    CAS  PubMed  Google Scholar 

  16. Migliaccio, A. R., Migliaccio, G., Durand, B., Mancini, G. C. & Adamson, J. W. The generation of colony-forming cells (CFC) and the expansion of hematopoiesis in cultures of human cord blood cells is dependent on the presence of stem cell factor (SCF). Cytotechnology 11, 107–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Brugger, W., Scheding, S., Ziegler, B., Buhring, H. J. & Kanz, L. Ex vivo manipulation of hematopoietic stem and progenitor cells. Semin. Hematol. 37, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Shpall, E. J. et al. Transplantation of ex vivo expanded cord blood. Biol. Blood Marrow Transplant. 8, 368–376 (2002).

    Article  PubMed  Google Scholar 

  19. Lee, S. J. et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 110, 4576–4583 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Zidar, B. L., Shadduck, R. K., Zeigler, Z. & Winkelstein, A. Observations on the anemia and neutropenia of human copper deficiency. Am. J. Hematol. 3, 177–185 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Percival, S. S. Neutropenia caused by copper deficiency: possible mechanisms of action. Nutr. Rev. 53, 59–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Peled, T. et al. Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br. J. Haematol. 116, 655–661 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Peled, T. et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp. Hematol. 32, 547–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. de Lima, M. et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 41, 771–778 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barker, J. N., Weisdorf, D. J. & Wagner, J. E. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N. Engl. J. Med. 344, 1870–1871 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Brunstein, C. G. et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood 116, 4693–4699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scaradavou, A. et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood 121, 752–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner, J. E. Should double cord blood transplants be the preferred choice when a sibling donor is unavailable? Best Pract. Res. Clin. Haematol. 22, 551–555 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verneris, M. R. et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood 114, 4293–4299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramirez, P. et al. Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant. 47, 799–803 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Cutler, C. et al. Donor-specific anti-HLA antibodies predict outcome in double umbilical cord blood transplantation. Blood 118, 6691–6697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barker, J. N. et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 105, 1343–1347 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Haspel, R. L. et al. Preinfusion variables predict the predominant unit in the setting of reduced-intensity double cord blood transplantation. Bone Marrow Transplant. 41, 523–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Somers, J. A. et al. Double umbilical cord blood transplantation: a study of early engraftment kinetics in leukocyte subsets using HLA-specific monoclonal antibodies. Biol. Blood Marrow Transplant. 19, 266–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development 138, 3593–3612 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Sethi, N. & Kang, Y. Notch signalling in cancer progression and bone metastasis. Br. J. Cancer 105, 1805–1810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milner, L. A., Kopan, R., Martin, D. I. & Bernstein, I. D. A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 83, 2057–2062 (1994).

    CAS  PubMed  Google Scholar 

  38. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Varnum-Finney, B. et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J. Cell Sci. 113, 4313–4318 (2000).

    CAS  PubMed  Google Scholar 

  40. Dallas, M. H., Varnum-Finney, B., Martin, P. J. & Bernstein, I. D. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 109, 3579–3587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784–1789 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C. & Bernstein, I. D. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106, 2693–2699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delaney, C. et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16, 232–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Musina, R. A., Bekchanova, E. S. & Sukhikh, G. T. Comparison of mesenchymal stem cells obtained from different human tissues. Bull. Exp. Biol. Med. 139, 504–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Corselli, M., Chen, C. W., Crisan, M., Lazzari, L. & Peault, B. Perivascular ancestors of adult multipotent stem cells. Arterioscler. Thromb. Vasc. Biol. 30, 1104–1109 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Weber, J. M. & Calvi, L. M. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 46, 281–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Caplan, A. I. & Dennis, J. E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Robinson, S. N. et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant. 37, 359–366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McNiece, I., Harrington, J., Turney, J., Kellner, J. & Shpall, E. J. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6, 311–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. de Lima, M. et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367, 2305–2315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, B. L. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl. Res. 157, 276–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Borradaile, N. M. & Pickering, J. G. NAD+, sirtuins, and cardiovascular disease. Curr. Pharm. Des. 15, 110–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Narala, S. R. et al. SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol. Biol. Cell 19, 1210–1219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ou, X. et al. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood 117, 440–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peled, T. et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp. Hematol. 40, 342–355.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Fruscione, F. et al. Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD+ release and P2Y11-mediated signaling. Stem Cells Dev. 20, 1183–1198 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y., He, J., He, X., Li, Y. & Lindgren, U. Nampt expression increases during osteogenic differentiation of multi- and omnipotent progenitors. Biochem. Biophys. Res. Commun. 434, 117–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Horwitz, M. E. et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J. Clin. Invest. 124, 3121–3128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dvorak, Z., Vrzal, R., Starha, P., Klanicova, A. & Travnicek, Z. Effects of dinuclear copper(II) complexes with 6-(benzylamino)purine derivatives on AhR and PXR dependent expression of cytochromes P450 CYP1A2 and CYP3A4 genes in primary cultures of human hepatocytes. Toxicol. In Vitro 24, 425–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. van Os, R. et al. Engraftment of syngeneic bone marrow is not more efficient after intrafemoral transplantation than after traditional intravenous administration. Exp. Hematol. 38, 1115–1123 (2010).

    Article  PubMed  Google Scholar 

  64. Castello, S. et al. Intra-bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency. Exp. Hematol. 32, 782–787 (2004).

    Article  PubMed  Google Scholar 

  65. Brunstein, C. G. et al. Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant. 43, 935–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Frassoni, F. et al. The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Pract. Res. Clin. Haematol. 23, 237–244 (2010).

    Article  PubMed  Google Scholar 

  67. Rocha, V. et al. Unrelated cord blood transplantation: outcomes after single-unit intrabone injection compared with double-unit intravenous injection in patients with hematological malignancies. Transplantation 95, 1284–1291 (2013).

    Article  PubMed  Google Scholar 

  68. Tashiro, K. et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, C. H. & Broxmeyer, H. E. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91, 100–110 (1998).

    CAS  PubMed  Google Scholar 

  70. Aiuti, A., Webb, I. J., Bleul, C., Springer, T. & Gutierrez-Ramos, J. C. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185, 111–120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A. & Springer, T. A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Christopherson, K. W. 2nd, Paganessi, L. A., Napier, S. & Porecha, N. K. CD26 inhibition on CD34+ or lineage human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev. 16, 355–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Broxmeyer, H. E. et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat. Med. 18, 1786–1796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Christopherson, K. W. 2nd, Hangoc, G. & Broxmeyer, H. E. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J. Immunol. 169, 7000–7008 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Christopherson, K. W. 2nd, Hangoc, G., Mantel, C. R. & Broxmeyer, H. E. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–1003 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Farag, S. S. et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 22, 1007–1015 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Ratajczak, M. Z., Kim, C., Ratajczak, J. & Janowska-Wieczorek, A. Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. Adv. Exp. Med. Biol. 735, 219–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reca, R. et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 101, 3784–3793 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Wysoczynski, M. et al. Defective engraftment of C3aR−/− hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia 23, 1455–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ratajczak, J. et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 103, 2071–2078 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Brunstein, C. G. et al. Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol. Blood Marrow Transplant. 19, 1474–1479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yagi, H. et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 19, 667–679 (2010).

    Article  PubMed  Google Scholar 

  85. Hoggatt, J., Singh, P., Sampath, J. & Pelus, L. M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113, 5444–5455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aggarwal, S. & Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. English, K. et al. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25High forkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 156, 149–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DeGowin, R. L. & Gibson, D. P. Prostaglandin-mediated enhancement of erythroid colonies by marrow stromal cells (MSC). Exp. Hematol. 9, 274–280 (1981).

    CAS  PubMed  Google Scholar 

  89. Cutler, C. et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122, 3074–3081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jetmore, A. et al. Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34+ cells transplanted into conditioned NOD/SCID recipients. Blood 99, 1585–1593 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Orschell-Traycoff, C. M. et al. Homing and engraftment potential of Sca-1+lin cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 96, 1380–1387 (2000).

    CAS  PubMed  Google Scholar 

  92. Geyer, M. B. et al. T cell depletion utilizing CD34+ stem cell selection and CD3+ addback from unrelated adult donors in paediatric allogeneic stem cell transplantation recipients. Br. J. Haematol. 157, 205–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Lang, P. et al. Transplantation of highly purified peripheral-blood CD34+ progenitor cells from related and unrelated donors in children with nonmalignant diseases. Bone Marrow Transplant. 33, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Peters, C. et al. Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia 13, 2070–2078 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arber, C. et al. Protection against lethal Aspergillus fumigatus infection in mice by allogeneic myeloid progenitors is not major histocompatibility complex restricted. J. Infect. Dis. 192, 1666–1671 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Arber, C. et al. Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 102, 421–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. BitMansour, A. et al. Myeloid progenitors protect against invasive aspergillosis and Pseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood 100, 4660–4667 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Broxmeyer, H. E. & Pelus, L. M. Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cells Mol. Dis. 53, 34–38 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barker, J. N., Byam, C. & Scaradavou, A. How I treat: the selection and acquisition of unrelated cord blood grafts. Blood 117, 2332–2339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wagner, J. E. et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N. Engl. J. Med. 371, 1685–1694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wahid, S. F. Indications and outcomes of reduced-toxicity hematopoietic stem cell transplantation in adult patients with hematological malignancies. Int. J. Hematol. 97, 581–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Bart, T. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells. Clinicoecon. Outcomes Res. 2, 141–147 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Majhail, N. S. et al. Costs of pediatric allogeneic hematopoietic-cell transplantation. Pediatr. Blood Cancer 54, 138–143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  105. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  106. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  107. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  108. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  109. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  110. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  111. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  112. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  113. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  114. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  115. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

Download references

Acknowledgements

The authors thank T. Glass for her conception and rendition of the bone-marrow microenvironment in Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

T.C.L. researched data for article. A.E.B., C.S.D., E.J.S. and J.E.W. reviewed and edited the manuscript before submission. T.C.L. and J.E.W. substantially contributed to discussion of content. T.C.L. wrote the manuscript.

Corresponding author

Correspondence to Troy C. Lund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, T., Boitano, A., Delaney, C. et al. Advances in umbilical cord blood manipulation—from niche to bedside. Nat Rev Clin Oncol 12, 163–174 (2015). https://doi.org/10.1038/nrclinonc.2014.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.215

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer