Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging biomarkers in head and neck cancer in the era of genomics

Key Points

  • Epstein–Barr virus in nasopharyngeal carcinoma, human papillomavirus (HPV) in head and neck squamous-cell carcinoma (HNSCC), and PET-imaging features provide robust prognostic biomarkers that are actively being incorporated into clinical trials

  • HPV-positive HNSCCs, most-commonly occurring in the oropharynx, have a better prognosis than HPV-negative tumours; HPV-positive status as a biomarker has facilitated efforts to de-intensify therapy in a subset of patients with a favourable prognosis

  • Comprehensive genomic analyses of HNSCC show loss-of-function in tumour suppressor genes is more common compared with gain-of-function in oncogenes due to genetic aberrations or viral oncoproteins

  • Although overall rates of DNA mutation and copy-number variation are low, HPV-positive tumours have a relatively higher rate of oncogene mutations than HPV-negative tumours

  • For HNSCC, prognostic biomarkers are limited in their utility, and development of predictive biomarkers is desired

  • Novel drug and biomarker developments have been focused on oncogenes, but more-common aberrations in tumour suppressors need to be further exploited

Abstract

Head and neck cancer (HNC) broadly includes carcinomas arising from the mucosal epithelia of the head and neck region as well as various cell types of salivary glands and the thyroid. As reflected by the multiple sites and histologies of HNC, the molecular characteristics and clinical outcomes of this disease vary widely. In this Review, we focus on established and emerging biomarkers that are most relevant to nasopharyngeal carcinoma and head and neck squamous-cell carcinoma (HNSCC), which includes primary sites in the oral cavity, oropharynx, hypopharynx and larynx. Applications and limitations of currently established biomarkers are discussed along with examples of successful biomarker development. For emerging biomarkers, preclinical or retrospective data are also described in the context of recently completed comprehensive molecular analyses of HNSCC, which provide a broad genetic landscape and molecular classification beyond histology and clinical characteristics. We will highlight the ongoing effort that will see a shift from prognostic to predictive biomarker development in HNC with the goal of delivering individualized cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular pathogenesis of EBV-related NPC.
Figure 2: Schematic diagram of molecular pathogenesis of HPV-related OPC.
Figure 3: Genomic testing using clinical specimens.

Similar content being viewed by others

References

  1. Pai, S. I. & Westra, W. H. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu. Rev. Pathol. 4, 49–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laurie, S. A. & Licitra, L. Systemic therapy in the palliative management of advanced salivary gland cancers. J. Clin. Oncol. 24, 2673–2678 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Menefee, M. E., Smallridge, R. C. & Bible, K. C. Systemic therapeutic approaches to advanced thyroid cancers. Am. Soc. Clin. Oncol. Educ. Book 2012, 389–392 (2012).

    Article  Google Scholar 

  4. National Cancer Institute. NCI Dictionary of Cancer Terms [online], (2014).

  5. Kern, S. E. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 72, 6097–6101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diamandis, E. P. The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med. 10, 87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lo, K. W., To, K. F. & Huang, D. P. Focus on nasopharyngeal carcinoma. Cancer Cell 5, 423–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Shanmugaratnam, K. & Sobin, L. H. Histology Typing of Tumours of the Upper Respiratory Tract and Ear (Springer-Verlag, 1991).

    Book  Google Scholar 

  9. Raab-Traub, N. Epstein–Barr virus in the pathogenesis of NPC. Semin. Cancer Biol. 12, 431–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Gourzones, C., Busson, P. & Raab-Traub, N. in Nasopharyngeal Carcinoma: Keys for Translational Medicine and Biology (ed. Busson, P.) 42–60 (Landes Bioscience/Springer Science and Business Media, 2013).

    Book  Google Scholar 

  11. Slebos, R. J. et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin. Cancer Res. 12, 701–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung, C. H., Bagheri, A. & D'Souza, G. Epidemiology of oral human papillomavirus infection. Oral Oncol. 50, 364–369 (2014).

    Article  PubMed  Google Scholar 

  15. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung, C. H. et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of non-oropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2013.54.5228 (2014).

  17. Kreimer, A. R., Clifford, G. M., Boyle, P. & Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol. Biomarkers Prev. 14, 467–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. McLaughlin-Drubin, M. E. & Münger, K. Oncogenic activities of human papillomaviruses. Virus Res. 143, 195–208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Dyson, N., Howley, P. M., Münger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Rampias, T., Sasaki, C., Weinberger, P. & Psyrri, A. E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J. Natl Cancer Inst. 101, 412–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Leemans, C. R., Braakhuis, B. J. & Brakenhoff, R. H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Mellin Dahlstrand, H. et al. p16INK4a correlates to human papillomavirus presence, response to radiotherapy and clinical outcome in tonsillar carcinoma. Anticancer Res. 25, 4375–4383 (2005).

    PubMed  Google Scholar 

  24. Weinberger, P. M. et al. Molecular classification identifies a subset of human papillomavirus--associated oropharyngeal cancers with favorable prognosis. J. Clin. Oncol. 24, 736–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Jordan, R. C. et al. Validation of methods for oropharyngeal cancer HPV status determination in US Cooperative Group trials. Am. J. Surg. Pathol. 36, 945–954 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lingen, M. W. et al. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 49, 1–8 (2013).

    Article  PubMed  Google Scholar 

  27. Marur, S., D'Souza, G., Westra, W. H. & Forastiere, A. A. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 11, 781–789 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Quon, H. & Richmon, J. D. Treatment deintensification strategies for HPV-associated head and neck carcinomas. Otolaryngol. Clin. North Am. 45, 845–861 (2012).

    Article  PubMed  Google Scholar 

  29. Fortin, A., Wang, C. S. & Vigneault, E. Influence of smoking and alcohol drinking behaviors on treatment outcomes of patients with squamous cell carcinomas of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 74, 1062–1069 (2009).

    Article  PubMed  Google Scholar 

  30. Chen, A. M. et al. Tobacco smoking during radiation therapy for head-and-neck cancer is associated with unfavorable outcome. Int. J. Radiat. Oncol. Biol. Phys. 79, 414–419 (2011).

    Article  PubMed  Google Scholar 

  31. Gillison, M. L. et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J. Clin. Oncol. 30, 2102–2111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maier, H., Dietz, A., Gewelke, U., Heller, W. D. & Weidauer, H. Tobacco and alcohol and the risk of head and neck cancer. Clin. Investig. 70, 320–327 (1992).

    CAS  PubMed  Google Scholar 

  33. Goldenberg, D. et al. Habitual risk factors for head and neck cancer. Otolaryngol. Head Neck Surg. 131, 986–993 (2004).

    Article  PubMed  Google Scholar 

  34. Kutler, D. I. et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch. Otolaryngol. Head Neck Surg. 129, 106–112 (2003).

    Article  PubMed  Google Scholar 

  35. Fakhry, C. et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl Cancer Inst. 100, 261–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Posner, M. R. et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann. Oncol. 22, 1071–1077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haddad, R. et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol. 14, 257–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Cohen, E. E. et al. DeCIDE: A phase III randomized trial of docetaxel(D), cisplatin (P), 5-fluorouracil (F) (TPF) induction chemotherapy in patients with N2/N3 locally advanced squamous cell carcinoma of the head and neck [abstract]. J. Clin. Oncol. 30 (Suppl.), a5500 (2012).

    Google Scholar 

  39. Ang, K. K. et al. A randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III–IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2013.53.5633 (2014).

  40. Lo, Y. M. et al. Quantitative analysis of cell-free Epstein–Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 59, 1188–1191 (1999).

    CAS  PubMed  Google Scholar 

  41. Lo, Y. M. et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein–Barr virus DNA. Cancer Res. 60, 6878–6881 (2000).

    CAS  PubMed  Google Scholar 

  42. Chan, A. T. et al. Plasma Epstein–Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl Cancer Inst. 94, 1614–1619 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, J. C. et al. Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med. 350, 2461–2470 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Chan, A. T. et al. Phase II study of neoadjuvant carboplatin and paclitaxel followed by radiotherapy and concurrent cisplatin in patients with locoregionally advanced nasopharyngeal carcinoma: therapeutic monitoring with plasma Epstein–Barr virus DNA. J. Clin. Oncol. 22, 3053–3060 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  46. Le, Q. T. et al. An international collaboration to harmonize the quantitative plasma Epstein–Barr virus DNA assay for future biomarker-guided trials in nasopharyngeal carcinoma. Clin. Cancer Res. 19, 2208–2215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leung, S. F. et al. Improved accuracy of detection of nasopharyngeal carcinoma by combined application of circulating Epstein–Barr virus DNA and anti-Epstein–Barr viral capsid antigen IgA antibody. Clin. Chem. 50, 339–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Ho, H. C., Ng, M. H., Kwan, H. C. & Chau, J. C. Epstein–Barr-virus-specific IgA and IgG serum antibodies in nasopharyngeal carcinoma. Br. J. Cancer 34, 655–660 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de-Vathaire, F. et al. Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int. J. Cancer 42, 176–181 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Zong, Y. S. et al. Immunoglobulin A against viral capsid antigen of Epstein–Barr virus and indirect mirror examination of the nasopharynx in the detection of asymptomatic nasopharyngeal carcinoma. Cancer 69, 3–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Rischin, D. et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J. Clin. Oncol. 28, 4142–4148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lassen, P. et al. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial. Radiother. Oncol. 100, 49–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Fakhry, C. et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J. Clin. Oncol. 32, 3365–3373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huber, H. E., Goodhart, P. J. & Huang, P. S. Retinoblastoma protein reverses DNA bending by transcription factor E2F. J. Biol. Chem. 269, 6999–7005 (1994).

    CAS  PubMed  Google Scholar 

  55. Montebugnoli, L. et al. Immunohistochemical expression of p16INK4A protein as a helpful marker of a subset of potentially malignant oral epithelial lesions: study on a series with long-term follow-up. Histopathology 57, 528–534 (2010).

    Article  PubMed  Google Scholar 

  56. Queiroz, A. B. et al. Expression of p27, p21WAF/Cip1, and p16INK4a in normal oral epithelium, oral squamous papilloma, and oral squamous cell carcinoma. Anticancer Res. 30, 2799–2803 (2010).

    CAS  PubMed  Google Scholar 

  57. Lewis, J. S. Jr et al. Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status. Mod. Pathol. 25, 1212–1220 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Reed, A. L. et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 56, 3630–3633 (1996).

    CAS  PubMed  Google Scholar 

  59. Hayes, D. N., Grandis, J. R. & El-Naggar, A. K. The Cancer Genome Atlas: integrated analysis of genome alterations in squamous cell carcinoma of the head and neck [abstract]. J. Clin. Oncol. 31 (Suppl.), a6009 (2013).

    Google Scholar 

  60. Westra, W. H. Detection of human papillomavirus in clinical samples. Otolaryngol. Clin. North Am. 45, 765–777 (2012).

    Article  PubMed  Google Scholar 

  61. Bishop, J. A. et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am. J. Surg. Pathol. 37, 185–192 (2012).

    Article  Google Scholar 

  62. Schache, A. G. et al. Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma. Br. J. Cancer 108, 1332–1339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paidpally, V. et al. FDG-PET/CT imaging biomarkers in head and neck squamous cell carcinoma. Imaging Med. 4, 633–647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xie, P. et al. 18F-FDG PET or PET–CT to evaluate prognosis for head and neck cancer: a meta-analysis. J. Cancer Res. Clin. Oncol. 137, 1085–1093 (2011).

    Article  PubMed  Google Scholar 

  65. Zhang, B., Li, X. & Lu, X. Standardized uptake value is of prognostic value for outcome in head and neck squamous cell carcinoma. Acta Otolaryngol. 130, 756–762 (2010).

    Article  PubMed  Google Scholar 

  66. Gupta, T. et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 38, 2083–2095 (2011).

    Article  PubMed  Google Scholar 

  67. Schöder, H., Fury, M., Lee, N. & Kraus, D. PET monitoring of therapy response in head and neck squamous cell carcinoma. J. Nucl. Med. 50 (Suppl. 1), 74S–88S (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ong, S. C. et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J. Nucl. Med. 49, 532–540 (2008).

    Article  PubMed  Google Scholar 

  69. Yao, M. et al. The role of FDG PET in management of neck metastasis from head-and-neck cancer after definitive radiation treatment. Int. J. Radiat. Oncol. Biol. Phys. 63, 991–999 (2005).

    Article  PubMed  Google Scholar 

  70. Porceddu, S. V. et al. Utility of positron emission tomography for the detection of disease in residual neck nodes after (chemo)radiotherapy in head and neck cancer. Head Neck 27, 175–181 (2005).

    Article  PubMed  Google Scholar 

  71. Loo, S. W. et al. Neck dissection can be avoided after sequential chemoradiotherapy and negative post-treatment positron emission tomography-computed tomography in N2 head and neck squamous cell carcinoma. Clin. Oncol. (R. Coll. Radiol.) 23, 512–517 (2011).

    Article  CAS  Google Scholar 

  72. Nayak, J. V. et al. Deferring planned neck dissection following chemoradiation for stage IV head and neck cancer: the utility of PET–CT. Laryngoscope 117, 2129–2134 (2007).

    Article  PubMed  Google Scholar 

  73. Vainshtein, J. M. et al. Reliability of post-chemoradiotherapy F-18-FDG PET/CT for prediction of locoregional failure in human papillomavirus-associated oropharyngeal cancer. Oral Oncol. 50, 234–239 (2014).

    Article  PubMed  Google Scholar 

  74. Koshkareva, Y., Branstetter, B. F. 4th, Gaughan, J. P. & Ferris, R. L. Predictive accuracy of first posttreatment PET/CT in HPV-related oropharyngeal squamous cell carcinoma. Laryngoscope 124, 1843–1847 (2014).

    Article  PubMed  Google Scholar 

  75. Chan, J. Y. et al. Retrospective review of positron emission tomography with contrast-enhanced computed tomography in the posttreatment setting in human papillomavirus-associated oropharyngeal carcinoma. Arch. Otolaryngol. Head Neck Surg. 138, 1040–1046 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yao, M. et al. Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer—a long-term outcome report. Int. J. Radiat. Oncol. Biol. Phys. 74, 9–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, J. C. et al. F-18 FDG-PET as a routine surveillance tool for the detection of recurrent head and neck squamous cell carcinoma. Oral Oncol. 43, 686–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Brun, E. et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 24, 127–135 (2002).

    Article  PubMed  Google Scholar 

  79. Menda, Y. et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J. Nucl. Med. 50, 1028–1035 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Seiwert, T. Y. et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-13-3310 (2014).

  82. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. National Cancer Institute. The Cancer Genome Atlas [online], (2014).

  84. Memorial Sloan Kettering Cancer Center. cBioPortal for Cancer Genomics [online], (2014).

  85. Sewell, A. et al. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin. Cancer Res. 20, 2300–2311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vermorken, J. B. et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 14, 697–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Vermorken, J. B. et al. Impact of tumor HPV status on outcome in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck receiving chemotherapy with or without cetuximab: retrospective analysis of the phase III EXTREME trial. Ann. Oncol. 25, 801–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chong, C. R. & Janne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 19, 1389–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Grandis, J. R. & Tweardy, D. J. TGF-alpha and EGFR in head and neck cancer. J. Cell. Biochem. Suppl. 17F, 188–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Grandis, J. et al. Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl Cancer Inst. 90, 824–832 (1998).

    Article  Google Scholar 

  91. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  92. Keren, S., Shoude, Z., Lu, Z. & Beibei, Y. Role of EGFR as a prognostic factor for survival in head and neck cancer: a meta-analysis. Tumour Biol. 35, 2285–2295 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Riesterer, O., Milas, L. & Ang, K. K. Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J. Clin. Oncol. 25, 4075–4083 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Burtness, B., Bauman, J. E. & Galloway, T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol. 14, e302–e309 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Chung, C. H. et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J. Clin. Oncol. 24, 4170–4176 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Sok, J. C. et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin. Cancer Res. 12, 5064–5073 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Wiedemann, M. & Trueb, B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics 69, 275–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Walter, V. et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS ONE 8, e56823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Malchers, F. et al. Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discov. 4, 246–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Marshall, M. E. et al. Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin. Cancer Res. 17, 5016–5025 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen, P. T. et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br. J. Cancer 109, 2248–2258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sweeny, L. et al. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope 122, 1539–1544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peruzzi, B. & Bottaro, D. P. Targeting the c-Met signaling pathway in cancer. Clin. Cancer Res. 12, 3657–3660 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Seiwert, T. Y. et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 69, 3021–3031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Knowles, L. M. et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res. 15, 3740–3750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghadjar, P. et al. MET Y1253D-activating point mutation and development of distant metastasis in advanced head and neck cancers. Clin. Exp. Metastasis 26, 1809–1815 (2009).

    Article  CAS  Google Scholar 

  108. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Ewen, M. E. & Lamb, J. The activities of cyclin D1 that drive tumorigenesis. Trends Mol. Med. 10, 158–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lannin, D. R. et al. Influence of socioeconomic and cultural factors on racial differences in late-stage presentation of breast cancer. JAMA 279, 1801–1807 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Kalish, L. H. et al. Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. 10, 7764–7774 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Namazie, A. et al. Cyclin D1 amplification and p16(MTS1/CDK4I) deletion correlate with poor prognosis in head and neck tumors. Laryngoscope 112, 472–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Dhand, R. et al. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 13, 511–521 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dhand, R. et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13, 522–533 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Foukas, L. C., Beeton, C. A., Jensen, J., Phillips, W. A. & Shepherd, P. R. Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Mol. Cell. Biol. 24, 966–975 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kang, S., Denley, A., Vanhaesebroeck, B. & Vogt, P. K. Oncogenic transformation induced by the p110β, -γ, and -δ isoforms of class I phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 103, 1289–1294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, J. Y., Engelman, J. A. & Cantley, L. C. Biochemistry. PI3K charges ahead. Science 317, 206–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Clarke, P. A. & Workman, P. Phosphatidylinositide-3-kinase inhibitors: addressing questions of isoform selectivity and pharmacodynamic/predictive biomarkers in early clinical trials. J. Clin. Oncol. 30, 331–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Lui, V. W. et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 3, 761–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barbareschi, M. et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin. Cancer Res. 13, 6064–6069 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Shen, D. et al. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity. Sci. Rep. 3, 1697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Rodrigues, N. R. et al. p53 mutations in colorectal cancer. Proc. Natl Acad. Sci. USA 87, 7555–7559 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Milner, J. & Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Nylander, K., Dabelsteen, E. & Hall, P. A. The p53 molecule and its prognostic role in squamous cell carcinomas of the head and neck. J. Oral Pathol. Med. 29, 413–425 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Poeta, M. L. et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lindenbergh-van der Plas, M. et al. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin. Cancer Res. 17, 3733–3741 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Licitra, L. et al. High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J. Clin. Oncol. 24, 5630–5636 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Moser, R. et al. Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin. Cancer Res. 20, 4274–4288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bolos, V., Grego-Bessa, J. & de la Pompa, J. L. Notch signaling in development and cancer. Endocr. Rev. 28, 339–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Song, X. et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin. Cancer Res. 20, 701–710 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Sun, W. et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091–1104 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Chung, C. H. et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5, 489–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Kumar, B. et al. EGFR, p16, HPV titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 26, 3128–3137 (2008).

    Article  PubMed  Google Scholar 

  139. Keck, M. K. et al. Genomic profiling of kinase genes in head and neck squamous cell carcinomas to identify potentially targetable genetic aberrations in FGFR1/2, DDR2, EPHA2, and PIK3CA [abstract]. J. Clin. Oncol. 31 (Suppl.), a6010 (2013).

    Google Scholar 

  140. De Cecco, L., Bossi, P., Locati, L., Canevari, S. & Licitra, L. Comprehensive gene expression meta-analysis of head and neck squamous cell carcinoma microarray data defines a robust survival predictor. Ann. Oncol. 25, 1628–1635 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Childs, G. et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 174, 736–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hatakeyama, H. et al. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS ONE 5, e12702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Howard, J. D. et al. miRNA array analysis determines miR-205 is overexpressed in head and neck squamous cell carcinoma and enhances cellular proliferation. J. Cancer Res. Ther. 1, 153–162 (2013).

    Article  CAS  Google Scholar 

  145. Tran, N., O'Brien, C. J., Clark, J. & Rose, B. Potential role of micro-RNAs in head and neck tumorigenesis. Head Neck 32, 1099–1111 (2010).

    Article  PubMed  Google Scholar 

  146. Nordsmark, M. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol. 77, 18–24 (2005).

    Article  PubMed  Google Scholar 

  147. Semenza, G. L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  148. Koukourakis, M. I. et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J. Clin. Oncol. 24, 727–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Le, Q. T. et al. Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90–03. J. Clin. Oncol. 27, 4281–4286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Overgaard, J., Eriksen, J. G., Nordsmark, M., Alsner, J. & Horsman, M. R. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 6, 757–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Tang, X. et al. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1α protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin. Cancer Res. 13, 2568–2576 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Kong, C. S. et al. The relationship between human papillomavirus status and other molecular prognostic markers in head and neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 74, 553–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lassen, P. et al. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother. Oncol. 94, 30–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Winter, S. C. et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 67, 3441–3449 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–2104 (2006).

    Article  PubMed  Google Scholar 

  156. Eschrich, S. A. et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 489–496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gildener-Leapman, N., Ferris, R. L. & Bauman, J. E. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol. 49, 1089–1096 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lopez-Albaitero, A. et al. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J. Immunol. 176, 3402–3409 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Strome, S. E. et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 63, 6501–6505 (2003).

    CAS  PubMed  Google Scholar 

  160. Baruah, P. et al. Decreased levels of alternative co-stimulatory receptors OX40 and 4–1BB characterise T cells from head and neck cancer patients. Immunobiology 217, 669–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Gildener-Leapman, N., Lee, J. & Ferris, R. L. Tailored immunotherapy for HPV positive head and neck squamous cell cancer. Oral Oncol. 50, 780–784 (2014).

    Article  PubMed  Google Scholar 

  162. Westra, W. H. The changing face of head and neck cancer in the 21st century: the impact of HPV on the epidemiology and pathology of oral cancer. Head Neck Pathol. 3, 78–81 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lyford-Pike, S. et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 73, 1733–1741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Messina, J. L. et al. 12-chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci. Rep. 2, 765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Saloura, V. et al. T cell-inflamed phenotype correlates with mesenchymal subtype, expression of PD-L1 and other immune checkpoints in head and neck cancer [abstract]. J. Clin. Oncol. 32 (Suppl.), a6009 (2014).

    Article  Google Scholar 

  168. Seiwert, T. Y. et al. A phase Ib study of MK-3475 in patients with human papillomavirus (HPV)-associated and non-HPV-associated head and neck (H/N) cancer [abstract]. J. Clin. Oncol. 32 (Suppl.), a6011 (2014).

    Article  Google Scholar 

  169. Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Kohrt, H. E. et al. Targeting CD137 enhances the efficacy of cetuximab. J. Clin. Invest. 124, 2668–2682 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  172. Diaz, L. A. Jr & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Liu, Q. & Sommer, S. S. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification. Biotechniques 29, 1072–1076 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Dressman, D., Yan, H., Traverso, G., Kinzler, K. W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl Acad. Sci. USA 100, 8817–8822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu, Y. et al. Isolation and analysis of rare cells in the blood of cancer patients using a negative depletion methodology. Methods 64, 169–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Tong, X., Yang, L., Lang, J. C., Zborowski, M. & Chalmers, J. J. Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytometry B Clin. Cytom. 72, 310–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Tinhofer, I., Hristozova, T., Stromberger, C., Keilhoiz, U. & Budach, V. Monitoring of circulating tumor cells and their expression of EGFR/phospho-EGFR during combined radiotherapy regimens in locally advanced squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 83, e685–e690 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  183. Huh, K. et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737–9747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Rubin, S. M., Gall, A. L., Zheng, N. & Pavletich, N. P. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123, 1093–1106 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Khleif, S. N. et al. Inhibition of cyclin D–CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl Acad. Sci. USA 93, 4350–4354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lynn, T. C., Tu, S. M. & Kawamura, A. Jr. Long-term follow-up of IgG and IgA antibodies against viral capsid antigens of Epstein–Barr virus in nasopharyngeal carcinoma. J. Laryngol. Otol. 99, 567–572 (1985).

    Article  CAS  PubMed  Google Scholar 

  188. Smeets, S. J. et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int. J. Cancer 121, 2465–2472 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Shi, W. et al. Comparative prognostic value of HPV16 E6 mRNA compared with in situ hybridization for human oropharyngeal squamous carcinoma. J. Clin. Oncol. 27, 6213–6221 (2009).

    Article  PubMed  Google Scholar 

  190. Schache, A. G. et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: sensitivity, specificity, and prognostic discrimination. Clin. Cancer Res. 17, 6262–6271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schlecht, N. F. et al. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer. Mod. Pathol. 24, 1295–1305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rotnaglova, E. et al. HPV involvement in tonsillar cancer: prognostic significance and clinically relevant markers. Int. J. Cancer 129, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Wong, R. J. et al. Diagnostic and prognostic value of [18F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J. Clin. Oncol. 20, 4199–4208 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Kantarjian, H. et al. Survival advantage with imatinib mesylate therapy in chronic-phase chronic myelogenous leukemia (CML-CP) after IFN-alpha failure and in late CML-CP, comparison with historical controls. Clin. Cancer Res. 10, 68–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Shaw, A. T. et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Schulz, H. et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J. Natl Cancer Inst. 99, 706–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to our beloved colleague and friend, Dr K. Kian Ang, who had been a pioneer in clinically relevant biomarker development and dedicated his career to improving the care of patients with head and neck cancer.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to each stage of the preparation of the manuscript for submission.

Corresponding author

Correspondence to Christine H. Chung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Kiess, A. & Chung, C. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol 12, 11–26 (2015). https://doi.org/10.1038/nrclinonc.2014.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.192

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer