Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metronomics: towards personalized chemotherapy?

Key Points

  • Metronomic chemotherapy relies on frequent administration of a low dose of chemotherapy

  • Initially considered as an antiangiogenic therapy, metronomic chemotherapy is now regarded as a multi-target therapy with immunological properties, and direct effect on cancer stem cells

  • Many clinical studies have demonstrated activity in relapsed and/or refractory disease and several randomized studies are ongoing

  • Metronomic chemotherapy can be easily combined with drug repositioning and targeted therapies to generate more potent non-toxic regimens

  • Combined with tumour molecular analysis, metronomic chemotherapy is poised to move towards personalized chemotherapy

  • Metronomic therapy is a non-toxic, inexpensive strategy well-suited for global oncology

Abstract

Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of action of metronomic chemotherapy.

Similar content being viewed by others

References

  1. Folkman, J. Tumour angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1161 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, K et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, K. D. et al. Redefining the target: chemotherapeutics as anti-angiogenics. J. Clin. Oncol. 19, 1195–1206 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 4, 423–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Browder, T. et al. Anti-angiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  7. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumour regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat. Rev. Cancer 5, 516–525 (2005).

    CAS  PubMed  Google Scholar 

  9. Bertolini, F. et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 63, 4342–4346 (2003).

    CAS  PubMed  Google Scholar 

  10. Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumours. Science 313, 1785–1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Shaked, Y. et al. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum anti-angiogenic activity. Blood 106, 3058–3061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. André, N. & Pasquier, E. For cancer, seek and destroy or live and let live? Nature 460, 324 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Fidler, I. J. & Ellis, L. M. Chemotherapeutic drugs—more really is not better. Nat. Med. 6, 500–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Pasquier, E. et al. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol. 7, 455–465 (2010).

    Article  PubMed  Google Scholar 

  16. Hanahan, D. et al. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumour angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klement, G. L. & Kamen, B. A. Nontoxic, fiscally responsible, future of oncology: could it be beginning in the Third World? J. Paediatr. Haematol. Oncol. 33, 1–3 (2011).

    Article  Google Scholar 

  18. Kerbel, R. S. et al. Continuous low-dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann. Oncol. 13, 12–15 (2000).

    Article  Google Scholar 

  19. Mannel, R. S. et al. A randomized phase III trial of IV carboplatin and paclitaxel × 3 courses followed by observation versus weekly maintenance low-dose paclitaxel in patients with early-stage ovarian carcinoma: a Gynecologic Oncology Group Study. Gynecol. Oncol. 122, 89–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. André, N. et al. Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Future Oncol. 7, 385–394 (2011).

    Article  PubMed  Google Scholar 

  21. Pai, P. S. et al. Oral metronomic scheduling of anticancer therapy-based treatment compared to existing standard of care in locally advanced oral squamous cell cancers: A matched-pair analysis. Indian J. Cancer 50, 135–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Dueñas-González, A. et al. The prince and the pauper. A tale of anticancer targeted agents. Mol. Cancer 7, 82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Blatt, J. & Corey, S. J. Drug repurposing in paediatrics and paediatric haematology oncology. Drug Discov. Today 18, 4–10 (2013).

    Article  PubMed  Google Scholar 

  25. André, N. et al. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol. 14, e239–e248 (2013).

    Article  PubMed  Google Scholar 

  26. Laquente, B. et al. Metronomic chemotherapy: an anti-angiogenic scheduling. Clin. Transl. Oncol. 9, 93–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Pasquier, E. et al. Concentration- and schedule-dependent effects of chemotherapy on the angiogenic potential and drug sensitivity of vascular endothelial cells. Angiogenesis 16, 373–386 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Mancuso, P. et al. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108, 452–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zitvogel, L. et al. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118, 1991–2001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galluzzi, L. et al. The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug. Discov. 11, 215–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Landreneau, J. P. et al. Immunological mechanisms of low and ultra-low dose cancer chemotherapy. Cancer Microenviron. http://dx.doi.org/10.1007%2Fs12307-013-0141-3.

  32. Tesniere, A. et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol. 20, 504–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Kaneno, R. et al. Haemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J. Transl. Med. 7, 58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaneno, R. et al. Chemotherapeutic agents in low noncytotoxic concentrations increase immunogenicity of human colon cancer cells. Cell. Oncol. (Dordr.) 34, 97–106 (2011).

    Article  CAS  Google Scholar 

  35. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Banissi, C. et al. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol. Immunother. 58, 1627–1634 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kan, S. et al. Suppressive effects of cyclophosphamide and gemcitabine on regulatory T-cell induction in vitro. Anticancer Res. 32, 5363–5369 (2012).

    CAS  PubMed  Google Scholar 

  39. Michels, T. et al. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J. Immunotoxicol. 9, 292–300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sierro, S. R. et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumour immunity. Eur. J. Immunol. 41, 2217–2228 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Geary, S. M. et al. The combination of a low-dose chemotherapeutic agent, 5-fluorouracil, and an adenoviral tumour vaccine has a synergistic benefit on survival in a tumour model system. PLoS ONE 8, e67904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Todaro, M. et al. Combining conventional chemotherapy and T cell-based immunotherapy to target cancer-initiating cells. Oncoimmunology 2, e25821 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hermans, I. F. et al. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumour immunotherapy in a murine melanoma model. Cancer Res. 63, 8408–8413 (2003).

    CAS  PubMed  Google Scholar 

  44. Chen, C. A. et al. Metronomic chemotherapy enhances antitumour effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumour angiogenesis. Mol. Ther. 18, 1233–1243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foy, K. C. et al. Immunotherapy with HER-2 and VEGF peptide mimics plus metronomic paclitaxel causes superior antineoplastic effects in transplantable and transgenic mouse models of human breast cancer. Oncoimmunology 1, 1004–1016 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, C. S. et al. Intermittent metronomic drug schedule is essential for activating anti-tumour innate immunity and tumour xenograft regression. Neoplasia 16, 84–96 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malvicini, M. et al. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to ametronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncoimmunology 1, 1038–1047 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Colleoni, M. et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 13, 73–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Folkins, C. et al. Anticancer therapies combining anti-angiogenic and tumour cell cytotoxic effects reduce the tumour stem-like cell fraction in glioma xenograft tumours. Cancer Res. 67, 3560–3564 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Vives, M. et al. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int. J. Cancer 133, 2464–2472 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Yan, H. et al. Drug-tolerant cancer cells show reduced tumour-initiating capacity: depletion of CD44 cells and evidence for epigenetic mechanisms. PLoS ONE 6, e24397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh, V. et al. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack. J. Immunol. 191, 5304–5316 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Doloff, J. C. et al. Increased tumour oxygenation and drug uptake during anti-angiogenic weekly low dose cyclophosphamide enhances the anti-tumour effect of weekly tirapazamine. Curr. Cancer Drug. Targets 9, 777–788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mupparaju, S. et al. Repeated tumour oximetry to identify therapeutic window during metronomic cyclophosphamide treatment of 9L gliomas. Oncol. Rep. 26, 281–286 (2011).

    CAS  PubMed  Google Scholar 

  55. Cham, K. K. et al. Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br. J. Cancer 103, 52–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Francia, G. et al. Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumour effects in the absence of inhibition of systemic vasculogenesis. Mol. Cancer Ther. 11, 680–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).

    CAS  PubMed  Google Scholar 

  58. Kummar, S. et al. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumours. Clin. Cancer Res. 17, 5123–5131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, K. et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumour-induced mobilization of circulating angiogenic cells. Proc. Natl Acad. Sci. USA 106, 2353–2358 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y. J. et al. Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α. Int. J. Cancer 132, 29–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Gatenby, R. A. et al. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pietras, K. & Hanahan, D. A. multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is anti-angiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Li, S. C. et al. Control dominating subclones for managing cancer progression and posttreatment recurrence by subclonal switchboard signal: implication for new therapies. Stem Cells Dev. 21, 503–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tran Cao, H. S. et al. Metronomic gemcitabine in combination with sunitinib inhibits multisite metastasis and increases survival in an orthotopic model of pancreatic cancer. Mol. Cancer Ther. 7, 2068–2078 (2010).

    Article  CAS  Google Scholar 

  65. Hashimoto, K. et al. Potent preclinical impact of metronomic low-dose oral topotecan combined with the anti-angiogenic drug pazopanib for the treatment of ovarian cancer. Mol. Cancer Ther. 4, 996–1006 (2010).

    Article  CAS  Google Scholar 

  66. Jang, J. W. et al. Suppression of hepatic tumour growth and metastasis by metronomic therapy in a rat model of hepatocellular carcinoma. Exp. Mol. Med. 43, 305–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar, S. et al. Metronomic oral topotecan with pazopanib is an active anti-angiogenic regimen in mouse models of aggressive paediatric solid tumour. Clin. Cancer Res. 17, 5656–5667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hackl, C. et al. Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62, 259–271 (2013).

    Article  PubMed  Google Scholar 

  69. Kerbel, R. S. et al. Preclinical recapitulation of anti-angiogenic drug clinical efficacies using models of early or late stage breast cancer metastatis. Breast 22, S57–S65 (2013).

    Article  PubMed  Google Scholar 

  70. Butler, J. M. et al. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, X. et al. Interaction between regulatory T cells and cancer stem cells. Int. J. Cancer 131, 1491–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Werno, C. et al. Knockout of HIF-1α in tumour-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31, 1863–1872 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Emmenegger, U. et al. Tumours that acquire resistance to low-dose metronomic cyclophosphamide retain sensitivity to maximum tolerated dose cyclophosphamide. Neoplasia 13, 40–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pan, Q. et al. Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem. Biophys. 62, 185–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Ashley, D. M. et al. Response of recurrent medulloblastoma to low-dose oral etoposide. J. Clin. Oncol. 14, 1922–1927 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Chow, A. et al. Preclinical analysis of resistance and cross-resistance to low-dose metronomic chemotherapy. Invest. New Drugs 32, 47–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. De Souza, R. et al. Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol. Cancer Ther. 10, 1289–1299 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Pasquier, E. et al. Concentration- and schedule-dependent effects of chemotherapy on the angiogenic potential and drug sensitivity of vascular endothelial cells. Angiogenesis 16, 373–386 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Martin-Padura, I. et al. Residual dormant cancer stem-cell foci are responsible for tumour relapse after anti-angiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab. Invest. 92, 952–966 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Emmenegger, U. et al. Low-dose metronomic daily cyclophosphamide and weekly tirapazamine: a well-tolerated combination regimen with enhanced efficacy that exploits tumour hypoxia. Cancer Res. 66, 1664–1674 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Thoenes, L. et al. In vivo chemoresistance of prostate cancer in metronomic cyclophosphamide therapy. J. Proteomics 73, 1342–1354 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Kubisch, R. et al. A Comprehensive gene expression analysis of resistance formation upon metronomic cyclophosphamide therapy. Transl. Oncol. 6, 1–9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. et al. Differential expression of mimecan and thioredoxin domain-containing protein 5 in colorectal adenoma and cancer: a proteomic study. Exp. Biol. Med. 232, 1152–1159 (2007).

    Article  CAS  Google Scholar 

  84. Zhang, L. et al. The influence of TXNDC5 gene on gastric cancer cell. J. Cancer Res. Clin. Oncol. 136, 1497–1505 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Vincent, E. E. et al. Overexpression of the TXNDC5 protein in non-small cell lung carcinoma. Anticancer Res. 31, 1577–1582 (2011).

    CAS  PubMed  Google Scholar 

  86. Chang, X. et al. Investigating a pathogenic role for TXNDC5 in tumours. Int. J. Oncol. 43, 1871–1884 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumour growth. Nat. Med. 19, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Briasoulis, E. et al. Dose selection trial of metronomic oral vinorelbine monotherapy in patients with metastatic cancer: a Hellenic Cooperative Oncology Group clinical translational study. BMC Cancer 13, 263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kontopodis, E. et al. A phase II study of metronomic oral vinorelbine administered in the second line and beyond in non-small cell lung cancer (NSCLC): a phase II study of the Hellenic Oncology Research Group. J. Chemother. 25, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Rajdev, L. et al. Phase I trial of metronomic oral vinorelbine in patients with advanced cancer. Cancer Chemother. Pharmacol. 68, 1119–1124 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Addeo, R. et al. Low-dose metronomic oral administration of vinorelbine in the first-line treatment of elderly patients with metastatic breast cancer. Clin. Breast Cancer 10, 301–306 (2010).

  92. Saridaki, Z. et al. A phase I trial of oral metronomic vinorelbine plus capecitabine in patients with metastatic breast cancer. Cancer Chemother Pharmacol. 69, 35–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. He, S. et al. Capecitabine “metronomic” chemotherapy for palliative treatment of elderly patients with advanced gastric cancer after fluoropyrimidine-based chemotherapy. Med. Oncol. 29, 100–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Fedele, P. et al. Efficacy and safety of low-dose metronomic chemotherapy with capecitabine in heavily pretreated patients with metastatic breast cancer. Eur. J. Cancer 48, 24–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Yoshimoto, M. et al. Metronomic oral combination chemotherapy with capecitabine and cyclophosphamide: a phase II study in patients with HER2-negative metastatic breast cancer. Cancer Chemother. Pharmacol. 70, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Z. et al. An all-oral combination of metronomic cyclophosphamide plus capecitabine in patients with anthracycline- and taxane-pretreated metastatic breast cancer: a phase II study. Cancer Chemother. Pharmacol. 69, 515–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Omuro, A. et al. Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro Oncol. 15, 242–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Santoni, M. et al. Protracted low doses of temozolomide for the treatment of patients with recurrent glioblastoma: a phase II study. Oncol. Lett. 4, 799–801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bojko, P. et al. Metronomic oral cyclophosphamide in patients with advanced solid tumours. Onkologie 35, 35–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. El-Arab, L. R. et al. Metronomic chemotherapy in metastatic breast cancer: impact on VEGF. J. Egypt. Natl Canc. Inst. 24, 15–22 (2012).

    Article  PubMed  Google Scholar 

  101. Gebbia, V. et al. Salvage therapy with oral metronomic cyclophosphamide and methotrexate for castration-refractory metastatic adenocarcinoma of the prostate resistant to docetaxel. Urology 78, 1125–1130 (2011).

    Article  PubMed  Google Scholar 

  102. Gebbia, V. et al. Oral metronomic cyclophosphamide with and without methotrexate as palliative treatment for patients with metastatic breast carcinoma. Anticancer Res. 32, 529–536 (2012).

    CAS  PubMed  Google Scholar 

  103. Otsuka, H. et al. Phase II clinical trial of metronomic chemotherapy with combined irinotecan and tegafur-gimeracil-oteracil potassium in metastatic and recurrent breast cancer. Breast Cancer http://dx.doi.org/10.1007%2Fs12282-013-0483-1.

  104. Ogata, Y. et al. Multicentre phase II study of a new effective S-1 and irinotecan combination schedule in patients with unresectable metastatic or recurrent colorectal cancer. Clin. Med. Insights Oncol. 7, 21–30 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasquier, E. et al. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr. Cancer Drug Targets 7, 566–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Galano, G. et al. Efficacy and tolerability of vinorelbine in the cancer therapy. Curr. Drug Saf. 6, 185–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Zielinski, C. et al. Optimising the dose of capecitabine in metastatic breast cancer: confused, clarified or confirmed? Ann. Oncol. 11, 2145–2152 (2010).

    Article  Google Scholar 

  108. Kushner, B. H. et al. Oral etoposide for refractory and relapsed neuroblastoma. J. Clin. Oncol. 17, 3221–3225 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Baruchel, S. et al. Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur. J. Cancer 42, 2335–2342 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Munoz, R. et al. Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast 14, 466–479 (2005).

    Article  PubMed  Google Scholar 

  111. Francia, G. et al. Comparative impact of trastuzumab and cyclophosphamide on HER-2-positive human breast cancer xenografts. Clin. Cancer Res. 20, 6358–6366 (2009).

    Article  CAS  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  113. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  114. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  115. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  116. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  117. Kato, H. et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N. Engl. J. Med. 17, 1713–1721 (2004).

    Article  Google Scholar 

  118. Watanabe, T. et al. Oral uracil and tegafur compared with classic cyclophosphamide, methotrexate, fluorouracil as postoperative chemotherapy in patients with node-negative, high-risk breast cancer: National Surgical Adjuvant Study for Breast Cancer 01 Trial. J. Clin. Oncol. 27, 1368–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Addeo, R. et al. Protracted low dose of oral vinorelbine and temozolomide with whole-brain radiotherapy in the treatment for breast cancer patients with brain metastases. Cancer Chemother. Pharmacol. 70, 603–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Lin, N. U. et al. CNS metastases in breast cancer. J. Clin. Oncol. 22, 3608–3617 (2004).

    Article  PubMed  Google Scholar 

  121. Salmaggi, A. et al. Prospective study of carmustine wafers in combination with 6-month metronomic temozolomide and radiation therapy in newly diagnosed glioblastoma: preliminary results. J. Neurosurg. 118, 821–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  123. Pallis, A. G. et al. A multicentre phase I trial of metronomic oral vinorelbine plus cisplatin in patients with NSCLC. Cancer Chemother. Pharmacol. 67, 1239–1245 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Crivellari, D. et al. Adjuvant pegylated liposomal doxorubicin for older women with endocrine nonresponsive breast cancer who are NOT suitable for a “standard chemotherapy regimen”: the CASA randomized trial. Breast 22, 130–137 (2013).

    Article  PubMed  Google Scholar 

  125. Dellapasqua, S. et al. Pegylated liposomal doxorubicin in combination with low-dose metronomic cyclophosphamide as preoperative treatment for patients with locally advanced breast cancer. Breast 20, 319–323 (2011).

    Article  PubMed  Google Scholar 

  126. Bellmunt, J. et al. Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06). Lancet Oncol. 11, 350–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Padovani, L. et al. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 8, 578–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Zustovich, F. et al. Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: a phase II study. Anticancer Res. 33, 3487–3494 (2013).

    CAS  PubMed  Google Scholar 

  129. Reardon, D. A. et al. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J. Neurooncol. 103, 371–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Berruti, A. et al. Phase II study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. Eur. J. Endocrinol. 166, 451–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Barber, E. L. et al. The combination of intravenous bevacizumab and metronomic oral cyclophosphamide is an effective regimen for platinum-resistant recurrent ovarian cancer. J. Gynecol. Oncol. 24, 258–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sánchez-Muñoz, A. et al. Bevacizumab plus low-dose metronomic oral cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Oncology 79, 98–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Mayer, E. L. et al. Combination anti-angiogenic therapy in advanced breast cancer: a phase 1 trial of vandetanib, a VEGFR inhibitor and metronomic chemotherapy, with correlative platelet proteomics. Breast Cancer Res. Treat. 136, 169–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Montagna, E. et al. Metronomic chemotherapy combined with bevacizumab and erlotinib in patients with metastatic HER2-negative breast cancer: clinical and biological activity. Clin. Breast Cancer 12, 207–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Saloustros, E. et al. Metronomic vinorelbine plus bevacizumab as salvage therapy for patients with metastatic breast cancer. J. BUON 16, 215–218 (2011).

    CAS  PubMed  Google Scholar 

  136. Kelley, R. K. et al. A phase 1 trial of imatinib, bevacizumab, and metronomic cyclophosphamide in advanced colorectal cancer. Br. J. Cancer 109, 1725–1734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Correale, P. et al. Phase II trial of bevacizumab and dose/dense chemotherapy with cisplatin and metronomic daily oral etoposide in advanced non-small-cell-lung cancer patients. Cancer Biol. Ther. 12, 112–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Y. M. et al. A phase II randomized trial of gefitinib alone or with tegafur/uracil treatment in patients with pulmonary adenocarcinoma who had failed previous chemotherapy. J. Thorac. Oncol. 6, 1110–1116 (2011).

    Article  PubMed  Google Scholar 

  139. Hsu, C. H. et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J. Hepatol. 53, 126–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kummar, S. et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumours and lymphomas. Clin. Cancer Res. 18, 1726–1734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Koumarianou, A. et al. Combination treatment with metronomic temozolomide, bevacizumab and long-acting octreotide for malignant neuroendocrine tumours. Endocr. Relat. Cancer 19, L1–L4 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Turner, D. C. et al. Combination metronomic oral topotecan and pazopanib: a pharmacokinetic study in patients with gynecological cancer. Anticancer Res. 33, 3823–3829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dickler, M. N. et al. A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin. Cancer Res. 14, 7878–7883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  145. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  146. Kruh, J. & Foster, C. S. Corticosteroid-sparing agents: conventional systemic immunosuppressants. Dev. Ophthalmol. 51, 29–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Prendergast, G. C. & Jaffee, E. M. Cancer immunologists and cancer biologists: why we didn't talk then but need to now. Cancer Res. 67, 3500–3504 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Kepp, O. et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 30, 61–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Liikanen, I. et al. Oncolytic adenovirus with temozolomide induces autophagy and antitumour immune responses in cancer patients. Mol. Ther. 21, 1212–1223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cerullo, V. et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol. Ther. 19, 1737–1746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kandalaft, L. E. et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2, e22664 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lasalvia-Prisco, E. et al. Addition of an induction regimen of antiangiogenesis and antitumour immunity to standard chemotherapy improves survival in advanced malignancies. Med. Oncol. 29, 3626–3633 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ellebaek, E. et al. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol. Immunother. 61, 1791–1804 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Soriano, J. L. et al. Metronomic cyclophosphamide and methotrexate chemotherapy combined with 1E10 anti-idiotype vaccine in metastatic breast cancer. Int. J. Breast Cancer 2011, 710292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walter, B. et al. Pioglitazone, etoricoxib, interferon-α, and metronomic capecitabine for metastatic renal cell carcinoma: final results of a prospective phase II trial. Med. Oncol. 29, 799–805 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Khan, O. A. et al. Continuous low-dose cyclophosphamide and methotrexate combined with celecoxib for patients with advanced cancer. Br. J. Cancer 104, 1822–1827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Perroud, H. A. et al. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol. 9, 451–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Dickinson, P. D. et al. Metronomic chemotherapy with cyclophosphamide and dexamethasone in patients with metastatic carcinoma of the prostate. Br. J. Cancer 106, 1464–1465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jellvert, A. et al. Effective oral combination metronomic chemotherapy with low toxicity for the management of castration-resistant prostate cancer. Exp. Ther. Med. 2, 579–584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Meng, L. J. et al. Evaluation of oral chemotherapy with capecitabine and cyclophosphamide plus thalidomide and prednisone in prostate cancer patients. J. Cancer Res. Clin. Oncol. 138, 333–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Aurilio, G. et al. Oral metronomic cyclophosphamide and methotrexate plus fulvestrant in advanced breast cancer patients: a mono-institutional case-cohort report. Breast J. 18, 470–474 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Young, S. D. et al. Phase II trial of a metronomic schedule of docetaxel and capecitabine with concurrent celecoxib in patients with prior anthracycline exposure for metastatic breast cancer. Curr. Oncol. 19, e75–e83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Patil, V. et al. Oral metronomic chemotherapy in recurrent, metastatic and locally advanced head and neck cancers. Clin. Oncol. (R. Coll. Radiol.) 25, 388 (2013).

    Article  CAS  Google Scholar 

  164. Allegrini, G. et al. Clinical, pharmacokinetic and pharmacodynamic evaluations of metronomic UFT and cyclophosphamide plus celecoxib in patients with advanced refractory gastrointestinal cancers. Angiogenesis 15, 275–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mir, O. et al. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur. J. Cancer 47, 515–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Coleman, M. et al. Metronomic therapy for refractory/relapsed lymphoma: the PEP-C low-dose oral combination chemotherapy regimen. Haematology 17 (Suppl. 1), S90–S92 (2012).

    Article  CAS  Google Scholar 

  167. Papanikolaou, X. et al. Metronomic therapy is an effective salvage treatment for heavily pre-treated relapsed/refractory multiple myeloma. Haematologica 98, 1147–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bhatt, R. S. et al. A phase 2 pilot trial of low-dose, continuous infusion, or “metronomic” paclitaxel and oral celecoxib in patients with metastatic melanoma. Cancer 116, 1751–1756 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Ladoire, S. et al. Metronomic oral cyclophosphamide prednisolone chemotherapy is an effective treatment for metastatic hormone-refractory prostate cancer after docetaxel failure. Anticancer Res. 30, 4317–4323 (2010).

    CAS  PubMed  Google Scholar 

  170. Colleoni, M. et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 13, 73–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Glode, L. M., Barqawi, A., Crighton, F., Crawford, E. D. & Kerbel, R. Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98, 1643–1648 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Sharp, J. R. et al. A multi-centre Canadian pilot study of metronomic temozolomide combined with radiotherapy for newly diagnosed paediatric brainstem glioma. Eur. J. Cancer 46, 3271–3279 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Fousseyni, T. et al. Children treated with metronomic chemotherapy in a low-income country: METRO-MALI-01. J. Paediatr. Haematol. Oncol. 33, 31–34 (2011).

    Article  CAS  Google Scholar 

  174. Russell, H. V. et al. A phase I study of zoledronic acid and low-dose cyclophosphamide in recurrent/refractory neuroblastoma: a new approaches to neuroblastoma therapy (NANT) study. Paediatr. Blood Cancer 57, 275–282 (2011).

    Article  Google Scholar 

  175. Zapletalova, D. et al. Metronomic chemotherapy with the COMBAT regimen in advanced paediatric malignancies: a multicentre experience. Oncology 82, 249–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Traore, F. et al. Preliminary evaluation of children treated with metronomic chemotherapy and valproic acid in a low-income country: Metro-Mali-02. Indian J. Cancer 50, 250–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Minturn, J. E. et al. A phase II study of metronomic oral topotecan for recurrent childhood brain tumours. Paediatr. Blood Cancer 56, 39–44 (2011).

    Article  Google Scholar 

  178. Felgenhauer, J. L. et al. A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumours: a Children's Oncology Group (COG) phase II study NCT00061893. Paediatr. Blood Cancer 60, 409–414 (2013).

    Article  CAS  Google Scholar 

  179. André, N. et al. Pilot study of a paediatric metronomic 4-drug regimen. Oncotarget 2, 960–965 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kivivuori, S. M. et al. Anti-angiogenic combination therapy after local radiotherapy with topotecan radiosensitizer improved quality of life for children with inoperable brainstem gliomas. Acta Paediatr. 100, 134–138 (2011).

    Article  PubMed  Google Scholar 

  181. Minard-Colin, V. et al. Phase II study of vinorelbine and continuous low doses cyclophosphamide in children and young adults with a relapsed or refractory malignant solid tumour: good tolerance profile and efficacy in rhabdomyosarcoma--a report from the Société Française des Cancers et leucémies de l'Enfant et de l'adolescent (SFCE). Eur. J. Cancer 48, 2409–2416 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Peyrl, A. et al. Anti-angiogenic metronomic therapy for children with recurrent embryonal brain tumours. Paediatr. Blood Cancer 59, 511–517 (2012).

    Article  Google Scholar 

  183. Dantonello, T. M. et al. Embryonal rhabdomyosarcoma with metastases confined to the lungs: report from the CWS Study Group. Paediatr. Blood Cancer 56, 725–732 (2011).

    Article  Google Scholar 

  184. Kieran, M. W. et al. A feasibility trial of anti-angiogenic (metronomic) chemotherapy in paediatric patients with recurrent or progressive cancer. J. Paediatr Haematol. Oncol. 27, 573–581 (2005).

    Article  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  186. Corbacioglu, S. et al. The RIST design: a promising molecularly targeted multimodal approach for the treatment of patients with relapsed and refractory neuroblastome. Paediatr. Blood Cancer 57, 739–740 (2011).

    Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  188. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  189. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  190. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  191. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  192. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  193. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  194. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  195. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  196. Kamen, B. A. et al. High-time chemotherapy or high time for low dose. J. Clin. Oncol. 16, 2935–2937 (2000).

    Article  Google Scholar 

  197. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 26, 2730–2741 (2009).

    Article  Google Scholar 

  198. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 18, 1810–1820 (2007).

    Article  Google Scholar 

  199. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 10, 987–996 (2005).

    Article  Google Scholar 

  200. Stockler, M. R. et al. Capecitabine versus classical cyclophosphamide, methotrexate, and fluorouracil as first-line chemotherapy for advanced breast cancer. J. Clin. Oncol. 34, 4498–4504 (2011).

    Article  CAS  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  202. Bottini, A. et al. Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J. Clin. Oncol. 24, 3623–3628 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Woo, H. Y. et al. Efficacy and safety of metronomic chemotherapy for patients with advanced primary hepatocellular carcinoma with major portal vein tumour thrombosis. Korean J. Hepatol. 18, 32–40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Das Thakur, M. & Stuart, D. D. The evolution of melanoma resistance reveals therapeutic opportunities. Cancer Res 73, 6106–6110 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Brugières, L. et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Paediatric Oncology. J. Clin. Oncol. 27, 5056–5061 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Le Deley, M. C. et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J. Clin. Oncol. 28, 3987–3993 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. André, N. et al. Looking at the seemingly contradictory role of vinblastine in anaplastic large-cell lymphoma from a metronomic perspective. J. Clin. Oncol. 29, e90–e91 (2011).

    Article  PubMed  Google Scholar 

  208. Davidson, A. et al. Phase II study of 21 day schedule oral etoposide in children. New Agents Group of the United Kingdom Children's Cancer Study Group (UKCCSG). Eur. J. Cancer 33, 1816–1822 (1997).

    Article  CAS  PubMed  Google Scholar 

  209. Casanova, M. et al. Vinorelbine in previously treated advanced childhood sarcomas: evidence of activity in rhabdomyosarcoma. Cancer 94, 3263–3268 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Kesari, S. et al. Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro Oncol. 9, 354–363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Herrlinger, U. et al. UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and cyclophosphamide for recurrent glioblastoma. J. Neurooncol. 71, 92295–92299 (2005).

    Article  Google Scholar 

  212. Bocci, G. et al. Thrombospondin 1, a mediator of the anti-angiogenic effects of low-dose metronomic chemotherapy. Proc. Natl Acad. Sci. USA 100, 12917–12922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Stempak, D. et al. A pilot pharmacokinetic and anti-angiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in paediatric recurrent solid tumours. J. Paediatr. Haematol. Oncol. 28, 720–778 (2006).

    Article  CAS  Google Scholar 

  214. Pectasides, D. et al. Expression of angiogenic markers in the peripheral blood of docetaxel-treated advanced breast cancer patients: a Hellenic Cooperative Oncology Group (HeCOG) study. Oncol. Rep. 27, 216–224 (2012).

    CAS  PubMed  Google Scholar 

  215. Lansiaux, A. et al. Circulating thrombospondin 1 level as a surrogate marker in patients receiving cyclophosphamide-based metronomic chemotherapy. Invest. New Drugs 30, 403–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Dellapasqua, S. et al. Increased mean corpuscular volume of red blood cells predicts response to metronomic capecitabine and cyclophosphamide in combination with bevacizumab. Breast 21, 309–313 (2012).

    Article  PubMed  Google Scholar 

  217. Kim, J. et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumour growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23, 23–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Pasquier, E. et al. Propranolol potentiates the anti-angiogenic effects and anti-tumour efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2, 797–809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Pasquier, E. et al. β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485–2494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jahchan, N. S. et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumours. Cancer Discov. 3, 1364–1377 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Weng, L. et al. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 14, 315–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Relling, M. V. et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 93, 324–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ciccolini, J. et al. Integrating pharmacogenetics into gemcitabine dosing--time for a change? Nat. Rev. Clin. Oncol. 8, 439–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Faivre, C. et al. A mathematical model for the administration of temozolomide: comparative analysis of conventional and metronomic chemotherapy regimens. Cancer Chemother. Pharmacol., 71, 1013–1019 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. André, N. et al. Mathematical model of cancer growth controlled by metronomic chemotherapies. ESAIM: Prodeedings 41, 77–94 (2013).

    Article  Google Scholar 

  226. Benzekry, S. & Hahnfeldt, P. Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers. J. Theor. Biol. 335, 235–244 (2013).

    Article  PubMed  Google Scholar 

  227. Caravagna, G. et al. Fine-tuning anti-tumour immunotherapies via stochastic simulations. BMC Bioinformatics 13 (Suppl. 4), S8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Panetta, J. C. et al. Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for paediatric neuroblastoma. Clin. Cancer Res. 14, 318–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Liao, D. et al. Generalized principles of stochasticity can be used to control dynamic heterogeneity. Phys. Biol. 9, 065006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hahnfeldt, P. et al. Centre of cancer systems biology second annual workshop--tumour metronomics: timing and dose level dynamics. Cancer Res. 73, 2949–2954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. McGuire, M. F. et al. Formalizing an integrative, multidisciplinary cancer therapy discovery workflow. Cancer Res. 73, 6111–6117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Doz, F. et al. The person in personalised medicine. Eur. J. Cancer 49, 1159–1160 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from Enfance & Santé/SFCE, and LNlavie and the Siric programme.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article, made a substantial contribution to discussion of content for the article, wrote the article, and edited the article before submission and after peer review.

Corresponding authors

Correspondence to Nicolas André or Eddy Pasquier.

Ethics declarations

Competing interests

N.A. declares he receives consulting honorarium from Sanofi. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, N., Carré, M. & Pasquier, E. Metronomics: towards personalized chemotherapy?. Nat Rev Clin Oncol 11, 413–431 (2014). https://doi.org/10.1038/nrclinonc.2014.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.89

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer