Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiparametric MRI in prostate cancer management

Key Points

  • T2-weighed MRI allows anatomical visualization of both the transitional and peripheral zones of the prostate, where 30% and 70% of tumours are located, respectively

  • A delay of at least 6–10 weeks after a biopsy procedure is recommended before obtaining MRI of the prostate to allow residual haemorrhage to resolve

  • The addition of diffusion-weighted (DW) MRI significantly improves the accuracy of prostate tumour volume measurements when compared with T2-weighted MRI alone

  • There is a significant negative correlation between tumour apparent diffusion coefficient (ADC) values and Gleason scores, suggesting that ADC values are useful in predicting the aggressiveness of tumours

  • Dynamic contrast-enhanced MRI provides an assessment of perfusion and vascular permeability of the tumour; semiquantitative parameters in this approach (peak enhancement and washout gradient) are associated with tumour aggressiveness

  • MR spectroscopy compares the metabolic profiles of cancer cells with those of normal cells; increased levels of choline and high choline:citrate ratios can identify different types and grades of tumours

Abstract

Prostate cancer is the second most common cancer in men worldwide. The clinical behaviour of prostate cancer ranges from low-grade indolent tumours that never develop into clinically significant disease to aggressive, invasive tumours that may progress rapidly to metastatic disease and death. Therefore, there is an urgent clinical need to detect high-grade cancers and to differentiate them from the indolent, slow-growing tumours. Conventional methods of cancer detection—such as levels of prostate-specific antigen (PSA) in serum, digital rectal examination, and random biopsies—are limited in their sensitivity, specificity, or both. The combination of conventional anatomical MRI and functional magnet resonance sequences—known as multiparametric MRI (mp-MRI)—is emerging as an accurate tool for identifying clinically relevant tumours owing to its ability to localize them. In this Review, we discuss the value of mp-MRI in localized and metastatic prostate cancer, highlighting its role in the detection, staging, and treatment planning of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A 61-year-old man with serum PSA of 23.85 ng/ml.
Figure 2: A 59-year-old man with serum PSA of 24.7 ng/ml.
Figure 3: Curve types representing enhancement patterns on DCE–MRI.
Figure 4: Flowchart showing the utility of mp-MRI in various clinical scenarios of prostate cancer.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  2. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  3. O'Shaughnessy, M., Konety, B. & Warlick, C. Prostate cancer screening: issues and controversies. Minn. Med. 93, 39–44 (2010).

    PubMed  Google Scholar 

  4. Weissbach, L. & Altwein, J. Active surveillance or active treatment in localized prostate cancer? Dtsch Arztebl. Int. 106, 371–376 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Powell, I. J., Bock, C. H., Ruterbusch, J. J. & Sakr, W. Evidence supports a faster growth rate and/or earlier transformation to clinically significant prostate cancer in black than in white American men, and influences racial progression and mortality disparity. J. Urol. 183, 1792–1796 (2010).

    Article  PubMed  Google Scholar 

  6. Stamatiou, K., Alevizos, A., Agapitos, E. & Sofras, F. Incidence of impalpable carcinoma of the prostate and of non-malignant and precarcinomatous lesions in Greek male population: an autopsy study. Prostate 66, 1319–1328 (2006).

    Article  PubMed  Google Scholar 

  7. Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    Article  PubMed  Google Scholar 

  8. Schmid, H. P., McNeal, J. E. & Stamey, T. A. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 71, 2031–2040 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Stamey, T. A. et al. Localized prostate cancer. Relationship of tumour volume to clinical significance for treatment of prostate cancer. Cancer 71, 933–938 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Mullerad, M. et al. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J. Urol. 174, 2158–2163 (2005).

    Article  PubMed  Google Scholar 

  11. Rastinehad, A. R. et al. Improving detection of clinically significant prostate cancer: MRI/TRUS fusion-guided prostate biopsy. J. Urol. http://dx.doi.org/10.1016/j.juro.2013.12.007 (2013).

  12. Habchi, H. et al. Value of prostate multiparametric magnetic resonance imaging for predicting biopsy results in first or repeat biopsy. Clin. Radiol. 69, e120–e128 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Schiavina, R. et al. The dilemma of localizing disease relapse after radical treatment for prostate cancer: which is the value of the actual imaging techniques? Curr. Radiopharm. 6, 92–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Dickinson, L. et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur. Urol. 59, 477–494 (2011).

    Article  PubMed  Google Scholar 

  15. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rosenkrantz, A. B. et al. Impact of delay after biopsy and post-biopsy haemorrhage on prostate cancer tumour detection using multi-parametric MRI: a multi-reader study. Clin. Radiol. 67, e83–e90 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. White, S. et al. Prostate cancer: effect of postbiopsy haemorrhage on interpretation of MR images. Radiology 195, 385–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, J., Lawrentschuk, N., Frydenberg, M., Thompson, L. & Stricker, P. The role of magnetic resonance imaging in the diagnosis and management of prostate cancer. BJU Int. 112 (Suppl. 2), 6–20 (2013).

    Article  PubMed  Google Scholar 

  19. Ikonen, S. et al. Optimal timing of post-biopsy MR imaging of the prostate. Acta Radiol. 42, 70–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kirkham, A. P. et al. Prostate MRI: who, when, and how? Report from a UK consensus meeting. Clin. Radiol. 68, 1016–1023 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kundra, V., Silverman, P. M., Matin, S. F. & Choi, H. Imaging in oncology from the University of Texas M. D. Anderson Cancer Centre: diagnosis, staging, and surveillance of prostate cancer. AJR Am. J. Roentgenol. 189, 830–844 (2007).

    Article  PubMed  Google Scholar 

  22. Verma, S. & Rajesh, A. A clinically relevant approach to imaging prostate cancer: review. AJR Am. J. Roentgenol. 196 (Suppl. 3), S1–S10 (2011).

    Article  PubMed  Google Scholar 

  23. Akin, O. et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239, 784–792 (2006).

    Article  PubMed  Google Scholar 

  24. Cheng, L., Montironi, R., Bostwick, D. G., Lopez-Beltran, A. & Berney, D. M. Staging of prostate cancer. Histopathology 60, 87–117 (2012).

    Article  PubMed  Google Scholar 

  25. Roethke, M. C. et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J. Urol. 31, 1111–1116 (2013).

    Article  PubMed  Google Scholar 

  26. Zhang, J. et al. Clinical stage T1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging. Radiology 253, 425–434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bloch, B. N. et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging--initial results. Radiology 245, 176–185 (2007).

    Article  PubMed  Google Scholar 

  28. Lee, H. W., Seo, S. I., Jeon, S. S., Lee, H. M. & Choi, H. Y. Can we predict real T3 stage prostate cancer in patients with clinical T3 (cT3) disease before radical prostatectomy? Yonsei Med. J. 51, 700–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masterson, T. A., Pettus, J. A., Middleton, R. G. & Stephenson, R. A. Isolated seminal vesicle invasion imparts better outcomes after radical retropubic prostatectomy for clinically localized prostate cancer: prognostic stratification of pt3b disease by nodal and margin status. Urology 66, 152–155 (2005).

    Article  PubMed  Google Scholar 

  30. Chandra, R. V. et al. Endorectal magnetic resonance imaging staging of prostate cancer. ANZ J. Surg. 77, 860–865 (2007).

    Article  PubMed  Google Scholar 

  31. Hricak, H. et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal--pelvic phased-array coils. Radiology 193, 703–709 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Casciani, E. et al. Contribution of the MR spectroscopic imaging in the diagnosis of prostate cancer in the peripheral zone. Abdom. Imaging 32, 796–802 (2007).

    Article  PubMed  Google Scholar 

  33. Costouros, N. G. et al. Diagnosis of prostate cancer in patients with an elevated prostate-specific antigen level: role of endorectal MRI and MR spectroscopic imaging. AJR Am. J. Roentgenol. 188, 812–816 (2007).

    Article  PubMed  Google Scholar 

  34. Haider, M. A. et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am. J. Roentgenol. 189, 323–328 (2007).

    Article  PubMed  Google Scholar 

  35. Tamada, T. et al. Prostate cancer: relationships between postbiopsy haemorrhage and tumour detectability at MR diagnosis. Radiology 248, 531–539 (2008).

    Article  PubMed  Google Scholar 

  36. Scheidler, J. et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging--clinicopathologic study. Radiology 213, 473–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Ekici, S. et al. A comparison of transrectal ultrasonography and endorectal magnetic resonance imaging in the local staging of prostatic carcinoma. BJU Int. 83, 796–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Wefer, A. E. et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J. Urol. 164, 400–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ikonen, S. et al. Prostatic MR imaging. Accuracy in differentiating cancer from other prostatic disorders. Acta Radiol. 42, 348–354 (2001).

    CAS  PubMed  Google Scholar 

  40. Akin, O. et al. Local staging of prostate cancer with endorectal surface coil MR imaging in a mid-field magnetic system. Clin. Imaging 27, 47–51 (2003).

    Article  PubMed  Google Scholar 

  41. Kwek, J. W. et al. Phased-array magnetic resonance imaging of the prostate with correlation to radical prostatectomy specimens: local experience. Asian J. Surg. 27, 219–224 (2004).

    Article  PubMed  Google Scholar 

  42. Nakashima, J. et al. Endorectal MRI for prediction of tumour site, tumour size, and local extension of prostate cancer. Urology 64, 101–105 (2004).

    Article  PubMed  Google Scholar 

  43. Yamaguchi, T. et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur. J. Nucl. Med. Mol. Imaging 32, 742–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Cirillo, S. et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur. Radiol. 19, 761–769 (2009).

    Article  PubMed  Google Scholar 

  45. Sala, E. et al. Endorectal MR imaging before salvage prostatectomy: tumour localization and staging. Radiology 238, 176–183 (2006).

    Article  PubMed  Google Scholar 

  46. Tan, J. S. et al. Local experience of endorectal magnetic resonance imaging of prostate with correlation to radical prostatectomy specimens. Ann. Acad. Med. Singapore 37, 40–43 (2008).

    PubMed  Google Scholar 

  47. Futterer, J. J. et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging before radical prostatectomy: experienced versus less experienced readers. Radiology 237, 541–549 (2005).

    Article  PubMed  Google Scholar 

  48. Stejskal, E. O. & Tanner, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965).

    Article  CAS  Google Scholar 

  49. Schmid-Tannwald, C., Oto, A., Reiser, M. F. & Zech, C. J. Diffusion-weighted MRI of the abdomen: current value in clinical routine. J. Magn. Reson. Imaging 37, 35–47 (2013).

    Article  PubMed  Google Scholar 

  50. Issa, B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J. Magn. Reson. Imaging 16, 196–200 (2002).

    Article  PubMed  Google Scholar 

  51. Esen, M., Onur, M. R., Akpolat, N., Orhan, I. & Kocakoc, E. Utility of ADC measurement on diffusion-weighted MRI in differentiation of prostate cancer, normal prostate and prostatitis. Quant. Imaging Med. Surg. 3, 210–216 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Kim, C. K., Park, B. K. & Kim, B. High-b-value diffusion-weighted imaging at 3T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am. J. Roentgenol. 194, W33–W37 (2010).

    Article  PubMed  Google Scholar 

  53. Rosenkrantz, A. B. et al. Computed diffusion-weighted imaging of the prostate at 3T: impact on image quality and tumour detection. Eur. Radiol. 23, 3170–3177 (2013).

    Article  PubMed  Google Scholar 

  54. Ueno, Y. et al. Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur. Radiol. 23, 3509–3516 (2013).

    Article  PubMed  Google Scholar 

  55. Quentin, M. et al. Increased signal intensity of prostate lesions on high b-value diffusion-weighted images as a predictive sign of malignancy. Eur. Radiol. 24, 209–213 (2014).

    Article  PubMed  Google Scholar 

  56. Katahira, K. et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur. Radiol. 21, 188–196 (2011).

    Article  PubMed  Google Scholar 

  57. Delongchamps, N. B. et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 107, 1411–1418 (2011).

    Article  PubMed  Google Scholar 

  58. Kim, C. K., Park, B. K., Lee, H. M. & Kwon, G. Y. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest. Radiol. 42, 842–847 (2007).

    Article  PubMed  Google Scholar 

  59. Kitajima, K. et al. Prostate cancer detection with 3T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J. Magn. Reson. Imaging 31, 625–631 (2010).

    Article  PubMed  Google Scholar 

  60. Lim, H. K., Kim, J. K., Kim, K. A. & Cho, K. S. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 250, 145–151 (2009).

    Article  PubMed  Google Scholar 

  61. Morgan, V. A., Kyriazi, S., Ashley, S. E. & DeSouza, N. M. Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol. 48, 695–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Tanimoto, A., Nakashima, J., Kohno, H., Shinmoto, H. & Kuribayashi, S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J. Magn. Reson. Imaging 25, 146–152 (2007).

    Article  PubMed  Google Scholar 

  63. Vargas, H. A. et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumour detection and assessment of aggressiveness. Radiology 259, 775–784 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yoshimitsu, K. et al. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J. Magn. Reson. Imaging 27, 132–139 (2008).

    Article  PubMed  Google Scholar 

  65. Wu, L. M. et al. Usefulness of diffusion-weighted magnetic resonance imaging in the diagnosis of prostate cancer. Acad. Radiol. 19, 1215–1224 (2012).

    Article  PubMed  Google Scholar 

  66. Turkbey, B. et al. Correlation of magnetic resonance imaging tumour volume with histopathology. J. Urol. 188, 1157–1163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

    Article  PubMed  Google Scholar 

  68. Jung, S. I. et al. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumour detection and assessment of aggressiveness. Radiology 269, 493–503 (2013).

    Article  PubMed  Google Scholar 

  69. Turkbey, B. et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258, 488–495 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Turkbey, B. et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J. Magn. Reson. Imaging http://dx.doi.org/10.1002/jmri.24317 (2013).

  71. Soylu, F. N. et al. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology 267, 797–806 (2013).

    Article  PubMed  Google Scholar 

  72. Sciarra, A. et al. Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer. Urol. Oncol. 29, 12–20 (2011).

    Article  PubMed  Google Scholar 

  73. Ganie, F. A. et al. Endorectal coil MRI and MR-spectroscopic imaging in patients with elevated serum prostate specific antigen with negative trus transrectal ultrasound guided biopsy. Urol. Ann. 5, 172–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kobus, T. et al. Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3T. Radiology 265, 457–467 (2012).

    Article  PubMed  Google Scholar 

  75. Jung, J. A. et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 233, 701–708 (2004).

    Article  PubMed  Google Scholar 

  76. Feng, Y., Jeong, E. K., Mohs, A. M., Emerson, L. & Lu, Z. R. Characterization of tumour angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice. Magn. Reson. Med. 60, 1347–1352 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Verma, S. et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am. J. Roentgenol. 198, 1277–1288 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nicholson, B., Schaefer, G. & Theodourescu, D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 20, 297–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Jackson, A. S. et al. Dynamic contrast-enhanced MRI for prostate cancer localization. Br. J. Radiol. 82, 148–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Tofts, P. S. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10, 223–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Grant, K. et al. Functional and molecular imaging of localized and recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 40 (Suppl. 1), S48–S59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Talab, S. S., Preston, M. A., Elmi, A. & Tabatabaei, S. Prostate cancer imaging: what the urologist wants to know. Radiol. Clin. North Am. 50, 1015–1041 (2012).

    Article  PubMed  Google Scholar 

  83. Kim, J. K. et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J. Magn. Reson. Imaging 22, 639–646 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Jager, G. J. et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203, 645–652 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Vos, E. K. et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3T. Eur. Urol. 64, 448–455 (2013).

    Article  PubMed  Google Scholar 

  86. Li, C. et al. Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T. Acta Radiol. 55, 239–247 (2013).

    Article  PubMed  Google Scholar 

  87. Deering, R. E., Bigler, S. A., Brown, M. & Brawer, M. K. Microvascularity in benign prostatic hyperplasia. Prostate 26, 111–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Padhani, A. R. et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin. Radiol. 55, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Babaian, R. J. et al. A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. J. Urol. 163, 152–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Presti, J. C. Jr, O'Dowd, G. J., Miller, M. C., Mattu, R. & Veltri, R. W. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J. Urol. 169, 125–129 (2003).

    Article  PubMed  Google Scholar 

  91. Eskew, L. A., Bare, R. L. & McCullough, D. L. Systematic 5 region prostate biopsy is superior to sextant method for diagnosing carcinoma of the prostate. J. Urol. 157, 199–202; discussion 202–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Ouzzane, A. et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology 78, 1356–1362 (2011).

    Article  PubMed  Google Scholar 

  93. Lemaitre, L. et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur. Radiol. 19, 470–480 (2009).

    Article  PubMed  Google Scholar 

  94. Villers, A. et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumour volume: correlation with radical prostatectomy findings. J. Urol. 176, 2432–2437 (2006).

    Article  PubMed  Google Scholar 

  95. Puech, P. et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 74, 1094–1099 (2009).

    Article  PubMed  Google Scholar 

  96. Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. 63, 125–140 (2013).

    Article  PubMed  Google Scholar 

  97. Haffner, J. et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 108, E171–E178 (2011).

    Article  PubMed  Google Scholar 

  98. Watanabe, Y. et al. Detection and localization of prostate cancer with the targeted biopsy strategy based on ADC map: a prospective large-scale cohort study. J. Magn. Reson. Imaging 35, 1414–1421 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Siddiqui, M. M. et al. Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur. Urol. 64, 713–719 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ouzzane, A., Puech, P. & Villers, A. MRI and surveillance. Curr. Opin. Urol. 22, 231–236 (2012).

    Article  PubMed  Google Scholar 

  101. Dickinson, L. et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur. Urol. 59, 477–494 (2011).

    Article  PubMed  Google Scholar 

  102. Muller, B. et al. The role of multiparametric magnetic resonance imaging in focal therapy for prostate cancer: a delphi consensus project. BJU Int. http://dx.doi.org/10.1111/bju.12548 (2013).

  103. Hovels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63, 387–395 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NIH intramural funding programme for financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.M.J. researched data and wrote the article. L.M.J., B.T., W.D.F. and P.L.C. made a substantial contribution to the discussion of the content. All authors reviewed and edited the manuscript before submission and after peer review.

Corresponding author

Correspondence to Baris Turkbey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, L., Turkbey, B., Figg, W. et al. Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 11, 346–353 (2014). https://doi.org/10.1038/nrclinonc.2014.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing