Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular analysis of circulating tumour cells—biology and biomarkers

Key Points

  • Circulating tumour cells (CTCs) can be captured from a simple blood test and their molecular characterization can provide vital insights into tumour heterogeneity

  • Advances in single-cell genomic profiling have enhanced the ability to interrogate CTCs for 'actionable' aberrations and emerging resistant subclones, which will assist in patient treatment stratification

  • Biological processes during CTC invasion and metastasis such as epithelial–mesenchymal transition and circulating tumour microemboli, typically explored in preclinical models are now being examined in the clinical setting

  • CTC and cell-free DNA mutational profiling represent complementary biomarkers for identification of predictive targets and real-time monitoring of disease in clinical practice

  • CTC assay validation and clinical qualification is required if CTCs are to become routine tests in the clinic; collaborative efforts between academia and industry are needed to make this a reality

Abstract

Growing evidence for intratumour heterogeneity informs us that single-site biopsies fall short of revealing the complete genomic landscape of a tumour. With an expanding repertoire of targeted agents entering the clinic, screening tumours for genomic aberrations is increasingly important, as is interrogating the tumours for resistance mechanisms upon disease progression. Multiple biopsies separated spatially and temporally are impractical, uncomfortable for the patient and not without risk. Here, we describe how circulating tumour cells (CTCs), captured from a minimally invasive blood test—and readily amenable to serial sampling—have the potential to inform intratumour heterogeneity and tumour evolution, although it remains to be determined how useful this will be in the clinic. Technologies for detecting and isolating CTCs include the validated CellSearch® system, but other technologies are gaining prominence. We also discuss how recent CTC discoveries map to mechanisms of haematological spread, previously described in preclinical models, including evidence for epithelial–mesenchymal transition, collective cell migration and cells with tumour-initiating capacity within the circulation. Advances in single-cell molecular analysis are enhancing our ability to explore mechanisms of metastasis, and the combination of CTC and cell-free DNA assays are anticipated to provide invaluable blood-borne biomarkers for real-time patient monitoring and treatment stratification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential of single CTC analysis to evaluate tumour heterogeneity and disease evolution.
Figure 2: Proposed mechanisms of tumour cell dissemination.
Figure 3: Examples of EMT cells isolated by ISET®.

Similar content being viewed by others

References

  1. Schilsky, R. L. Personalized medicine in oncology: the future is now. Nat. Rev. Drug Discov. 9, 363–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. McDermott, U. & Settleman, J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J. Clin. Oncol. 27, 5650–5659 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Dancey, J. E., Bedard, P. L., Onetto, N. & Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 148, 409–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Dienstmann, R., Rodon, J. & Tabernero, J. Biomarker-driven patient selection for early clinical trials. Curr. Opin. Oncol. 25, 305–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2, e17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garraway, L. A. & Baselga, J. Whole-genome sequencing and cancer therapy: is too much ever enough? Cancer Discov. 2, 766–768 (2012).

    Article  PubMed  Google Scholar 

  11. Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B. & Workman, P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol. Ther. 93, 252–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, C. C., Maher, M. M. & Shepard, J. A. Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am. J. Roentgenol. 196, W678–W682 (2011).

    Article  PubMed  Google Scholar 

  14. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, L. et al. Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood 102, 2321–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bateman, C. M. et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115, 3553–3558 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38, 2651–2660 (1978).

    CAS  PubMed  Google Scholar 

  24. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, M. Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alix-Panabières, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Hou, J. M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

    Article  PubMed  Google Scholar 

  31. Krebs, M. G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    Article  PubMed  Google Scholar 

  32. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    Article  PubMed  Google Scholar 

  34. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Khan, M. S. et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J. Clin. Oncol. 31, 365–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Khoja, L. et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J. Invest. Dermatol. 133, 1582–1590 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Hiraiwa, K. et al. Clinical significance of circulating tumor cells in blood from patients with gastrointestinal cancers. Ann. Surg. Oncol. 15, 3092–3100 (2008).

    Article  PubMed  Google Scholar 

  38. Devriese, L. A., Voest, E. E., Beijnen, J. H. & Schellens, J. H. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat. Rev. 37, 579–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Pailler, E. et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 31, 2273–2281 (2013).

    Article  PubMed  Google Scholar 

  40. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pestrin, M. et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res. Treat. 118, 523–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Schneck, H. et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol. Oncol. 7, 976–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5, 180ra148 (2013).

    Article  CAS  Google Scholar 

  45. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Thiery, J. P. & Lim, C. T. Tumor dissemination: an EMT affair. Cancer Cell 23, 272–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Tsuji, T., Ibaragi, S. & Hu, G. F. Epithelial–mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 69, 7135–7139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsuji, T. et al. Epithelial–mesenchymal transition induced by growth suppressor p12CDK2–AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res. 68, 10377–10386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995).

    CAS  PubMed  Google Scholar 

  54. Bednarz-Knoll, N., Alix-Panabières, C. & Pantel, K. Clinical relevance and biology of circulating tumor cells. Breast Cancer Res. 13, 228 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vona, G. et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156, 57–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Müller, V. et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin. Cancer Res. 11, 3678–3685 (2005).

    Article  PubMed  Google Scholar 

  57. Gascoyne, P. R., Noshari, J., Anderson, T. J. & Becker, F. F. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30, 1388–1398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moon, H. S. et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11, 1118–1125 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  PubMed  Google Scholar 

  60. Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13, 920–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saucedo-Zeni, N. et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41, 1241–1250 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra147 (2013).

    Article  CAS  Google Scholar 

  66. Saliba, A. E. et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl Acad. Sci. USA 107, 14524–14529 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zieglschmid, V. et al. Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res. 25, 1803–1810 (2005).

    CAS  PubMed  Google Scholar 

  68. Harb, W. et al. Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl. Oncol. 6, 528–538 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vona, G. et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39, 792–797 (2004).

    Article  PubMed  Google Scholar 

  70. Hou, H. W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alix-Panabieres, C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res. 195, 69–76 (2012).

    Article  PubMed  Google Scholar 

  72. Lu, J. et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int. J. Cancer 126, 669–683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. López-Riquelme, N. et al. Imaging cytometry for counting circulating tumor cells: comparative analysis of the CellSearch vs Image Stream systems. APMIS http://dx.doi.org/10.1111/apm.12061.

  74. Marrinucci, D. et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 9, 016003 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kraan, J. et al. External quality assurance of circulating tumor cell enumeration using the CellSearch® system: a feasibility study. Cytometry B Clin. Cytom. 80, 112–118 (2011).

    Article  PubMed  Google Scholar 

  76. Parkinson, D. R. et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stathopoulou, A. et al. Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin. Cancer Res. 9, 5145–5151 (2003).

    CAS  PubMed  Google Scholar 

  78. Xenidis, N. et al. Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J. Clin. Oncol. 27, 2177–2184 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Iinuma, H. et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes' stage B and C colorectal cancer. J. Clin. Oncol. 29, 1547–1555 (2011).

    Article  PubMed  Google Scholar 

  80. Chimonidou, M., Kallergi, G., Georgoulias, V., Welch, D. R. & Lianidou, E. S. Breast cancer metastasis suppressor-1 promoter methylation provides prognostic information in primary breast tumors. Mol. Cancer Res. 11, 1248–1257 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, C. L. et al. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73, 813–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Fabbri, F. et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 335, 225–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Peeters, D. J. et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 108, 1358–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Punnoose, E. A. et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin. Cancer Res. 18, 2391–2401 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Voet, T. et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41, 6119–6138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ulmer, A. et al. Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin. Cancer Res. 10, 531–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Heitzer, E. et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73, 2965–2975 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Powell, A. A. et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cann, G. M. et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS ONE 7, e49144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Asare, A. L. et al. Differential gene expression profiles are dependent upon method of peripheral blood collection and RNA isolation. BMC Genomics 9, 474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fidler, I. J. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9, 223–227 (1973).

    Article  CAS  PubMed  Google Scholar 

  96. Liotta, L. A., Kleinerman, J. & Saidel, G. M. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004 (1974).

    CAS  PubMed  Google Scholar 

  97. Glaves, D. Correlation between circulating cancer cells and incidence of metastases. Br. J. Cancer 48, 665–673 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liotta, L. A., Saidel, M. G. & Kleinerman, J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889–894 (1976).

    CAS  PubMed  Google Scholar 

  99. Watanabe, S. The metastasizability of tumor cells. Cancer 7, 215–223 (1954).

    Article  CAS  PubMed  Google Scholar 

  100. Garvie, W. H. & Matheson, A. B. The effect of intravenous fluids on the development on experimental tumour metastases: their effect on tumour cell aggregation. Br. J. Cancer 20, 838–846 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lione, A. & Bosmann, H. B. Quantitative relationship between volume of tumour cell units and their intravascular survival. Br. J. Cancer 37, 248–253 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Topal, B., Roskams, T., Fevery, J. & Penninckx, F. Aggregated colon cancer cells have a higher metastatic efficiency in the liver compared with nonaggregated cells: an experimental study. J. Surg. Res. 112, 31–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Knisely, W. H. & Mahaley, M. S. Jr. Relationship between size and distribution of spontaneous metastases and three sizes of intravenously injected particles of VX2 carcinoma. Cancer Res. 18, 900–905 (1958).

    CAS  PubMed  Google Scholar 

  104. Thompson, S. C. The colony forming efficiency of single cells and cell aggregates from a spontaneous mouse mammary tumour using the lung colony assay. Br. J. Cancer 30, 332–336 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Edelman, G. M., Gallin, W. J., Delouvée, A., Cunningham, B. A. & Thiery, J. P. Early epochal maps of two different cell adhesion molecules. Proc. Natl Acad. Sci. USA 80, 4384–4388 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, K. K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103, 13180–13185 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soltermann, A. et al. Prognostic significance of epithelial–mesenchymal and mesenchymal–epithelial transition protein expression in non-small cell lung cancer. Clin. Cancer Res. 14, 7430–7437 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Bellovin, D. I. et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 25, 6959–6967 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Gjerdrum, C. et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc. Natl Acad. Sci. USA 107, 1124–1129 (2010).

    Article  PubMed  Google Scholar 

  112. Otsuki, S. et al. Vimentin expression is associated with decreased survival in gastric cancer. Oncol. Rep. 25, 1235–1242 (2011).

    PubMed  Google Scholar 

  113. Lee, K. W. et al. Twist1 is an independent prognostic factor of esophageal squamous cell carcinoma and associated with its epithelial-mesenchymal transition. Ann. Surg. Oncol. 19, 326–335 (2012).

    Article  PubMed  Google Scholar 

  114. Byers, L. A. et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Kurokawa, M., Ise, N., Omi, K., Goishi, K. & Higashiyama, S. Cisplatin influences acquisition of resistance to molecular-targeted agents through epithelial-mesenchymal transition-like changes. Cancer Sci. 104, 904–911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yauch, R. L. et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin. Cancer Res. 11, 8686–8698 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Lim, S. et al. SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS ONE 8, e66558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Hou, J. M. et al. Circulating tumor cells as a window on metastasis biology in lung cancer. Am. J. Pathol. 178, 989–996 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lecharpentier, A. et al. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br. J. Cancer 105, 1338–1341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kallergi, G. et al. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 13, R59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Armstrong, A. J. et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Balasubramanian, P. et al. Multiparameter analysis, including EMT markers, on negatively enriched blood samples from patients with squamous cell carcinoma of the head and neck. PLoS ONE 7, e42048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  128. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stewart, J. M. et al. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl Acad. Sci. USA 108, 6468–6473 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grimshaw, M. J. et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 10, R52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J. Natl Cancer Inst. 45, 773–782 (1970).

    CAS  PubMed  Google Scholar 

  135. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Zhao, Q. et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol. Cancer 9, 154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fidler, I. J. Immune stimulation-inhibition of experimental cancer metastasis. Cancer Res. 34, 491–498 (1974).

    CAS  PubMed  Google Scholar 

  141. Ludatscher, R. M., Luse, S. A. & Suntzeff, V. An electron microscopic study of pulmonary tumor emboli from transplantable Morris hepatoma 5123. Cancer Res. 27, 1939–1952 (1967).

    CAS  PubMed  Google Scholar 

  142. Sugino, T. et al. An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am. J. Pathol. 160, 1973–1980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Küsters, B. et al. Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis. Oncogene 26, 5808–5815 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Laübli, H., Stevenson, J. L., Varki, A., Varki, N. M. & Borsig, L. L-Selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Gasic, G. J., Gasic, T. B., Galanti, N., Johnson, T. & Murphy, S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int. J. Cancer 11, 704–718 (1973).

    Article  CAS  PubMed  Google Scholar 

  146. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M. & Varki, A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA 99, 2193–2198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Upreti, M. et al. Tumor-endothelial cell three-dimensional spheroids: new aspects to enhance radiation and drug therapeutics. Transl. Oncol. 4, 365–376 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Fidler, I. J. & Talmadge, J. E. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171 (1986).

    CAS  PubMed  Google Scholar 

  149. Talmadge, J. E., Wolman, S. R. & Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science 217, 361–363 (1982).

    Article  CAS  PubMed  Google Scholar 

  150. Krebs, M. G. et al. Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. J. Thorac. Oncol. 7, 306–315 (2012).

    Article  PubMed  Google Scholar 

  151. Tomlinson, J. S., Alpaugh, M. L. & Barsky, S. H. An intact overexpressed E-cadherin/α, β-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 61, 5231–5241 (2001).

    CAS  PubMed  Google Scholar 

  152. Kleer, C. G., van Golen, K. L., Braun, T. & Merajver, S. D. Persistent E-cadherin expression in inflammatory breast cancer. Mod. Pathol. 14, 458–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Sugino, T. et al. Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med. 2, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  154. De Giorgi, U. et al. Circulating tumor cells and bone metastases as detected by FDG-PET/CT in patients with metastatic breast cancer. Ann. Oncol. 21, 33–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Cho, E. H. et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys. Biol. 9, 016001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Griffiths, J. D., McKinna, J. A., Rowbotham, H. D., Tsolakidis, P. & Salsbury, A. J. Carcinoma of the colon and rectum: circulating malignant cells and five-year survival. Cancer 31, 226–236 (1973).

    Article  CAS  PubMed  Google Scholar 

  157. Hofman, V. et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin. Cancer Res. 17, 827–835 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Kats-Ugurlu, G. et al. Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J. Pathol. 219, 287–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Glaves, D., Huben, R. P. & Weiss, L. Haematogenous dissemination of cells from human renal adenocarcinomas. Br. J. Cancer 57, 32–35 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Brandt, B. et al. Isolation of prostate-derived single cells and cell clusters from human peripheral blood. Cancer Res. 56, 4556–4561 (1996).

    CAS  PubMed  Google Scholar 

  161. Molnar, B., Ladanyi, A., Tanko, L., Sréter, L. & Tulassay, Z. Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin. Cancer Res. 7, 4080–4085 (2001).

    CAS  PubMed  Google Scholar 

  162. Wang, Z. P. et al. Identification and characterization of circulating prostate carcinoma cells. Cancer 88, 2787–2795 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Krebs, M. G., Hou, J.-M., Ward, T. H., Blackhall, F. H. & Dive, C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther. Adv. Med. Oncol. 2, 351–365 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gorges, T. M. & Pantel, K. Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol. Immunother. 62, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2, 25ra23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hiltermann, T. J. et al. Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann. Oncol. 23, 2937–2942 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Naito, T. et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer. J. Thorac. Oncol. 7, 512–519 (2012).

    Article  PubMed  Google Scholar 

  168. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Riethdorf, S. et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 16, 2634–2645 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. de Bono, J. S. et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin. Cancer Res. 13, 3611–3616 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, Z. et al. Eradication of EGFR-positive circulating tumor cells and objective tumor response with lapatinib and capecitabine. Cancer Biol. Ther. 10, 860–864 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Evans, W. K. et al. Etoposide (VP-16) and cisplatin: an effective treatment for relapse in small-cell lung cancer. J. Clin. Oncol. 3, 65–71 (1985).

    Article  CAS  PubMed  Google Scholar 

  173. Bidard, F. C. et al. Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev. 32, 179–188 (2013).

    Article  PubMed  Google Scholar 

  174. Swennenhuis, J. F., Tibbe, A. G., Levink, R., Sipkema, R. C. & Terstappen, L. W. Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry A 75, 520–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Rossi, E. et al. M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by CellSearch analysis. Clin. Cancer Res. 16, 5233–5243 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Ang, J. E., Kaye, S. & Banerji, U. Tissue-based approaches to study pharmacodynamic endpoints in early phase oncology clinical trials. Curr. Drug Targets 13, 1525–1534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, L. H. et al. Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin. Cancer Res. 16, 1073–1084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kallergi, G. et al. Phosphorylated EGFR and PI3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res. 10, R80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Flores, L. M. et al. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br. J. Cancer 102, 1495–1502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kallergi, G. et al. Hypoxia-inducible factor-1α and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients. Breast Cancer Res. 11, R84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Camidge, D. R. et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13, 1011–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ilie, M. et al. ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann. Oncol. 23, 2907–2913 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Hayes, D. F. et al. Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int. J. Oncol. 21, 1111–1117 (2002).

    CAS  PubMed  Google Scholar 

  184. Jiang, Y., Palma, J. F., Agus, D. B., Wang, Y. & Gross, M. E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56, 1492–1495 (2010).

    Article  PubMed  Google Scholar 

  185. Leversha, M. A. et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin. Cancer Res. 15, 2091–2097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu, Y. et al. Circulating tumor cells in HER2-positive metastatic breast cancer patients: a valuable prognostic and predictive biomarker. BMC Cancer 13, 202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. De Mattos-Arruda, L. et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol. 10, 377–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Cristofanilli, M. & Fortina, P. Circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 369, 93–94 (2013).

    Article  PubMed  Google Scholar 

  191. Taniguchi, K. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin. Cancer Res. 17, 7808–7815 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Hofman, P. et al. Immunohistochemistry to identify EGFR mutations or ALK rearrangements in patients with lung adenocarcinoma. Ann. Oncol. 23, 1738–1743 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Ni, X. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl Acad. Sci. USA 110, 21083–21088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Cancer Research UK for research support via core funding to the Cancer Research UK Manchester Institute (C5659/A12328). R. L. Metcalf and L. Carter are supported by an unrestricted educational grant from Cancer Research UK and AstraZeneca.

Author information

Authors and Affiliations

Authors

Contributions

M. G. Krebs, R. L. Metcalf and L. Carter researched the data for the article, and discussed its content with C. Dive and F. H. Blackhall. All authors wrote the manuscript and edited it before submission.

Corresponding author

Correspondence to Caroline Dive.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krebs, M., Metcalf, R., Carter, L. et al. Molecular analysis of circulating tumour cells—biology and biomarkers. Nat Rev Clin Oncol 11, 129–144 (2014). https://doi.org/10.1038/nrclinonc.2013.253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.253

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer