Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development of immunoconjugates for targeted cancer therapy

Key Points

  • Immunoconjugates represent an efficient strategy to exploit the tumor-targeting properties of monoclonal antibodies and the tumor-killing properties of various types of toxins

  • Immunoconjugates are composed of an antibody, a linker and a therapeutic entity

  • Pharmacologics, radioisotopes, and toxins can all be used as therapeutic entity in an immunoconjugate; all three types of therapeutic entities are actively being investigated

  • Future immunoconjugate development will entail the repurposing of existing tumor-targeting antibodies as immunoconjugate delivery vehicles, as well as the design of antibodies with novel tumor-targeting specificities

Abstract

Immunoconjugates are specific, highly effective, minimally toxic anticancer therapies that are beginning to show promise in the clinic. Immunoconjugates consist of three separate components: an antibody that binds to a cancer cell antigen with high specificity, an effector molecule that has a high capacity to kill the cancer cell, and a linker that will ensure the effector does not separate from the antibody during transit and will reliably release the effector to the cancer cell or tumour stroma. The high affinity antibody–antigen interaction allows specific and selective delivery of a range of effectors, including pharmacologic agents, radioisotopes, and toxins, to cancer cells. Some anticancer molecules are not well tolerated when administered systemically owing to unacceptable toxicity to the host. However, this limitation can be overcome through the linking of such cytotoxins to specific antibodies, which mask the toxic effects of the drug until it reaches its target. Conversely, many unconjugated antibodies are highly specific for a cancer target, but have low therapeutic potential and can be repurposed as delivery vehicles for highly potent effectors. In this Review, we summarize the successes and shortcomings of immunoconjugates, and discuss the future potential for the development of these therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoconjugate modules.
Figure 2: Immunoconjugates structure.
Figure 3: Internalization process.

Similar content being viewed by others

References

  1. Paul Ehrlich—Biographical. Nobelprize.org[online], (2014).

  2. Anderson, C. S., Quinones, R. & Olson, M. R. Determining efficacy and side effects from the concurrent use of chemotherapy and radiation therapy for the management of adult solid tumors [abstract]. J. Clin. Oncol. 32 (Suppl.), e17640 (2014).

    Article  Google Scholar 

  3. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs, C. S. et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J. Clin. Oncol. 25, 4779–4786 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hochster, H. S. et al. Safety and efficacy of oxaliplatin-fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer (mCRC): results of the TREE-Study. J. Clin. Oncol. 26, 3523–3529 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Reichert, J. M. et al. Monoclonal antibody successes in the clinic. Nat. Biotechnol. 23, 1073–1078 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sievers, E. L. & Senter, P. D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Teicher, B. A. & Chari, R. V. J. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res. 17, 6389–6397 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Thurber, G. M., Schmidt, M. M. & Wittrup, K. D. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev. 60, 1421–1434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chari, R. V. J. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res. 41, 98–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kapoor, P. et al. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br. J. Haematol. 141, 135–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Yarden, Y. The EGFR family and its ligands in human cancer: signaling mechanisms and therapeutic opportunities. Eur. J. Cancer 37, S3–S8 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Colcher, D. et al. Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. J. Nucl. Med. 42, 225–241 (1998).

    CAS  PubMed  Google Scholar 

  17. Wells, A. EGF receptor. Int. J. Biochem. Cell Biol. 31, 637–643 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Colby, D. W. et al. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 342, 901–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Binz, H. K. Amstutz, P. & Pluckthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, Y. et al. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol. Cancer Ther. 11, 143–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Ducancel, F. & Muller, B. H. Molecular engineering of antibodies for therapeutic and diagnostic purposes. mAbs 4, 445–457 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weiner, L. M. et al. I. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res. 53, 94–110 (1993).

    CAS  PubMed  Google Scholar 

  23. Yokota, T. et al. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res. 53, 3776–3783 (1993).

    CAS  PubMed  Google Scholar 

  24. Adams, G. P. et al. Optimization of in vivo tumor targeting in SCID mice with divalent forms of 741F8 anti-c-erbB-2 single-chain Fv: effects of dose escalation and repeated i.v. administration. Cancer Immunol. Immunother. 40, 299–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Adams, G. P. et al. Enhanced tumor specificity of 741F8–1 (sFv')2, an anti-c-erbB-2 single-chain Fv dimer, mediated by stable radioiodine conjugation. J. Nucl. Med. 36, 2276–2281 (1995).

    CAS  PubMed  Google Scholar 

  26. Saga, T. et al. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc. Natl Acad. Sci. USA 92, 8999–9003 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams, G. P. et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490 (1998).

    CAS  PubMed  Google Scholar 

  28. Zhang, Y. & Pastan, I. High shed antigen levels within tumours: an additional barrier to immunoconjugate therapy. Clin. Cancer Res. 14, 7981–7986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  30. Ackerman, M. E., Pawlowski, D. & Wittrup, K. D. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol. Cancer Ther. 7, 2233–2240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mayer, A. et al. Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin. Cancer Res. 5, 1711–1719 (2000).

    Google Scholar 

  32. Singh, R., Zhang, Y., Pastan, I. & Kreitman, R. J. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin. Cancer Res. 18, 152–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Pasquetto, M. V., Vecchia, L., Covini, D., Digilio, R. & Scotti, C. Targeted drug delivery using immunoconjugates: principles and applications. J. Immunother. 34, 611–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Marks, J. D. et al. Human antibody fragments specific for human blood group antigens from a phage display library. Biotechnology 11, 1145–1149 (1993).

    CAS  PubMed  Google Scholar 

  35. Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Griffiths, A. D. & Duncan, A. R. Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 1, 102–108 (1998).

    Article  Google Scholar 

  37. Feldhaus, M. J. & Siegel, R. W. Yeast display of antibody fragments: a discovery and characterization platform. J. Immunol. Methods 290, 69–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Graff, C. P., Chester, K., Begent, R. & Wittrop, K. D. Directed evolution of an anti-carcinoembrynoic antigen sc Fv with a 4-day monovalent dissociation half-time at 37°C. Protein Eng. Des. Sel. 17, 293–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Dubreuil, O. et al. Fine tuning of specificity of an anti-progesterone antibody by first and second sphere residue engineering. J. Biol. Chem. 280, 24880–24887 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Clark, L. A. et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci. 15, 949–960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lippow, S. M., Wittrup, K. D. & Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat. Biotechnol. 25, 1171–1176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ward, E. S., Zhou, J., Ghetie, V. & Ober, R. J. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int. Immunol. 15, 187–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Covell, D. G. et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice. Cancer Res. 46, 3969–3978 (1986).

    CAS  PubMed  Google Scholar 

  44. Adams, G. P. et al. Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, A. M. Engineered antibodies for molecular imaging of cancer. Methods 65, 139–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Olafsen, T., Sirk, S. J., Olma, S., Shen, C. K. & Wu, A. M. ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol. 33, 669–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Sanderson, R. J. In vivo drug-linker stability of an anti-CD30 dipeptide-liked auristatin immunoconjugate. Clin. Cancer Res. 11, 843–852 (2005).

    CAS  PubMed  Google Scholar 

  48. Ducry, L. & Stump, B. Antibody-drug congjugates: linking cytotoxic payloads to monoclonal antibodies Bioconjug. Chem. 21, 5–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Koblinski, J. E., Ahran, M. & Sloane, B. F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Sjogren, H. O. et al. Human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetant rates. Cancer Res. 57, 4530–4536 (1997).

    CAS  PubMed  Google Scholar 

  52. Saleh, M. N. et al. Phase I trial of the anti-lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18, 2282–2292 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Wong, J. Y. C. et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment in patients with colorectal cancer. Clin. Cancer Res. 10, 5014–5021 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Kreitman, R. J. et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox in patients with hairy cell leukemia. J. Clin. Oncol. 30, 1822–1828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hassan, R. et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci. Transl. Med. 5, 208ra147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dosio, F., Brusa, P. & Cattel, L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins 3, 848–883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sutherland, M. S. et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem. 281, 10540–10547 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. US Department of Health and Human Services. Brentuximab vedotin information. US Food and Drug Administration [online], (2012).

  59. Ujjani, C. & Cheson B. D. The current status and future impact of targeted therapies in non-Hodgkin lymphoma. Expert Rev. Hematol. 6, 191–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  61. Ansell, S. M. et al. Phase I/II study of an anti-CD30 monoclonal antibody in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J. Clin. Oncol. 25, 2764–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. LoRusso, P. M., Weiss, D., Guardino, E., Grish, S. & Sliwkowski, M. X. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res. 17, 6437–6447 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Barok, M., Tanner, M., Koninki, K. & Isola, J. Trasuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res. 13, R46 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Burris, H. A. et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 29, 398–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Krop, I. E. et al. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trasuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J. Clin. Oncol. 30, 3234–3241 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. US Department of Health and Human Services. Ado-trastuzumab emtansine. US Food and Drug Administration [online], (2013).

  68. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  69. Ricart, A. D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res. 17, 6417–6427 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Petersdorf, S. et al. Preliminary results of Southwest Oncology Group Study S0106: an international intergroup phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia [abstract]. Blood 114, a790 (2009).

    Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  72. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  73. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  74. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  75. Ribrag, V. et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 20, 213–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  77. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  78. Maric, G., Rose, A. A., Annis, M. G. & Siegel, P. M. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco. Targets Ther. 6, 839–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Celdex Therapeutics. Final Data from Celldex Therapeutic's CDX-011 phase 2 study in metastatic breast cancer supports overall survival benefit in patients with high GPNMB expression [online], (2012).

  80. Naumovski, L. & Junutula, J. R. Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer. Curr. Opin. Mol. Ther. 12, 248–257 (2010).

    CAS  PubMed  Google Scholar 

  81. Hamid, O. et al. Frequent dosing and GPNMB expression with CDX-011, an antibody-drug conjugate, in patients with advanced melanoma. J. Clin. Oncol. 28, 15s (2010).

    Article  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  83. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  84. Woll, P. Abstract B237: Clinical experience of IMGN901 (BB-10901, huN901-DM1) in patients with Merkel cell carcinoma (MCC). Mol. Cancer Ther. 8, B237 (2009).

    Google Scholar 

  85. Gan, H. K. et al. A phase I study evaluating ABT-414 in combination with temozolamide for subjects with recurrent or unresectable glioblastoma. J. Clin. Oncol. 32, 5s (2014).

    Google Scholar 

  86. Burris, H. A. et al. A phase I study of DNIB0600A, an antibody-drug conjugate targeting NaPi2b, in patients with non-small cell lung cancer or platinum-resistant ovarian cancer. J. Clin. Oncol. 32, 5s (2014).

    Google Scholar 

  87. Marx, J. L. in A Revolulation in Biotechnology (ed. Marx, J. L.) 145–158 (The Press Syndicate of the University of Cambridge, 1989).

    Google Scholar 

  88. Witzig, T. E. et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J. Clin. Oncol. 20, 3262–3269 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. US Department of Health and Human Services. Ibritumomab tiuxetan product approval information. US Food and Drug Administration [online], (2009).

  90. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  91. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  92. Kaminski, M. S. et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J. Clin. Oncol. 19, 3918–3928 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Timmerman, L. Why good drugs sometimes fail: the Bexxar story. Xconomy [online], (2013).

    Google Scholar 

  94. Steiner, M. & Neri, D. Antibody-radionucleotide conjugates for cancer therapy: historical considerations and new trends. Clin. Cancer Res. 17, 6406–6416 (2011).

    Article  PubMed  Google Scholar 

  95. Song, H. & Sgouros, G. Radioimmunotherapy of solid tumors: searching for the right target. Current Drug Deliv. 8, 26–44 (2011).

    Article  CAS  Google Scholar 

  96. Sharkey, R. M., Karacay, H., Govindan, S. V. & Goldenberg, D. M. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol. Cancer Ther. 10, 1072–1081 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  98. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  99. Press, O. W. et al. A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD-20 expressing lymphoma xenografts. Blood 98, 2535–2543 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Knox, S. J. et al. Phase II trial of Yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colorectal cancer. Clin. Cancer Res. 6, 406–414 (2000).

    CAS  PubMed  Google Scholar 

  101. Park, S. I. et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 116, 4231–4239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baidoo, K. E., Yong, K. & Brechbiel, M. W. Molecular pathoways: targeted α-particle radiation therapy. Clin. Cancer Res. 19, 530–537 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Kim, Y. S. & Brechbiel, M. W. An overview of targeted alpha therapy. Tumour Biol. 33, 573–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Gould, B. J. et al. Phase I study of an anti-breast cancer immunotoxin by continuous infusion: report of a targeted toxic effect not predicted by animal studies. J. Natl Cancer Inst. 81, 775–781 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Weiner, L. M. et al. Phase I evaluation of an anti-breast cancer monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res. 49, 4062–4067, (1989).

    CAS  PubMed  Google Scholar 

  106. Fitzgerald, D. J., Wayne, A. S., Kreitman, R. J. & Pastan, I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res. 71, 6300–6309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chaudhary, V. K. et al. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339, 394–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  109. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  110. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  111. Bogner, C. et al. Immunotoxin BL22 induces apoptosis in mantle cell lymphoma (MCL) cells dependent on Bcl-2 expression. Br. J. Haematol. 148, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Traini, R. et al. ABT-737 overcomes resistance to immunotoxin-mediated apoptosis and enhances the delivery of Pseudomonas exotoxin-based proteins to the cell cytosol. Mol. Cancer Ther. 9, 2007–2015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000).

    CAS  PubMed  Google Scholar 

  114. Mattoo, A. R., Pastan, I. & Fitzgerald, D. Combination treatmens with the PKC inhibitor, enzastaurin, enhance the cytotoxicity of the anti-mesothelin immunotoxin, SS1P. PLoS ONE 8, e75576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, W. et al. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc. Natl Acad. Sci. USA 109, 11782–11787 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Onda, M. et al. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc. Natl Acad. Sci. USA 105, 11311–11316 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pai, L. H. et al. Inhibition of antibody response to Pseudomonas exotoxin by 15-deoxyspergualin in mice. Cancer Res. 50, 7750–7753 (1990).

    CAS  PubMed  Google Scholar 

  118. Gelber, E. E. et al. Effect of immunosuppressive agents on the immunogenicity and efficacy of an immunotoxin in mice. Clin. Cancer Res. 4, 1297–1304 (1998).

    CAS  PubMed  Google Scholar 

  119. Hassan, R., Williams-Gould, J., Watson, T., Pai-Scherf, L. & Pastan, I. Pretreatment with rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin. Cancer Res. 10, 16–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Mazor, R. et al. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc. Natl Acad. Sci. USA 109, E3597–E3603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Basu, A. et al. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjugate Chem. 17, 618–630 (2006).

    Article  CAS  Google Scholar 

  122. Kreitman, R. J. Immunotoxins for targeted cancer therapy. AAPS J. 8, E532–E551 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Becerril, B., Poul, M. A. & Marks, J. D. Towards selection of internalizing antibodies from phage libraries. Biochem. Biophys. Res. Commun. 255, 386–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Nielsen, U. B. et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591, 109–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Noble, C. O. et al. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemother. Pharmacol. 64, 741–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. El-Bayoumi, T. A. & Tochilin, V. P. Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin. Cancer Res. 15, 1973–1980 (2009).

    Article  CAS  Google Scholar 

  127. Xu, L. et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. 5, 337–346 (2002).

    Article  CAS  Google Scholar 

  128. Mamot, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 13, 1234–1241 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Senzer, N. et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. 21, 1096–1103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kelly, E. J., Hadac, E. M., Greiner, S. & Russell, S. J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med. 14, 1278–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Galanis, E. et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70, 875–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, X. et al. Enhanced pancreatic cancer gene therapy by combination of adenoviral vector expressing c-erb-B2-targeted immunotoxin with a replication-competent adenovirus or etoposide. Hum. Gene Ther. 21, 157–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Sharkey, R. M. & Goldenberg, D. M. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J. Clin. 56, 226–243 (2006).

    Article  PubMed  Google Scholar 

  134. Fournier, P. & Schirrmacher, V. Bispecific antibodies and trispecific immunocytokines for targeting the immune system against cancer. BioDrugs, 27, 35–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. List, T. & Neri, D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin. Pharmacol. 5, 29–45 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Pasche, N. & Neri, D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov. Today 17, 583–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Carnemolla, B. et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99, 1659–1665 (2002).

    Article  PubMed  Google Scholar 

  138. Borsi, L. et al. Selective targeted delivery of TNF-alpha to tumor blood vessels. Blood 102, 4384–4392 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Halin, C. et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol. 20, 264–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  141. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  142. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  143. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  144. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  145. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  146. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  147. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A. & Kinzler, K. W. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Robinson, M. K. et al. Quantitative immune-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 65, 1471–1478 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Rudnick, S. I. et al. Influsence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 71, 2250–2259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schlom, J. Therapeutic cancer vaccines: current status and moving forward. J. Natl Cancer Inst. 104, 599–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Disis, M. L. et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol. 27, 4685–4692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.M.W. is supported by National Institute of Health Awards CA51880 and CA50633.

Author information

Authors and Affiliations

Authors

Contributions

B.G.S., D.A. and L.M.W. researched data for this article, reviewed and edited the manuscript before submission, provided substantial contribution to discussion of content and wrote the manuscript.

Corresponding author

Correspondence to Louis M. Weiner.

Ethics declarations

Competing interests

L.M.W. is an advisor and a consultant for Abbvie, Celldex Pharmaceuticals, Jounce Pharmaceuticals, and Merrimack Pharmaceuticals; he has stock options in Celldex Pharmaceuticals, Jounce Pharmaceuticals and Merrimack Pharmaceuticals and his research has been funded by Symphogen AG. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaglo, B., Aldeghaither, D. & Weiner, L. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol 11, 637–648 (2014). https://doi.org/10.1038/nrclinonc.2014.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing