Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-guided cancer surgery using near-infrared fluorescence

Key Points

  • Near-infrared (NIR) fluorescence imaging has been demonstrated to be feasible during cancer surgery using available imaging systems and contrast agents

  • Clinical applicability has been described in sentinel lymph-node mapping, tumour imaging, visualization of vital structures and imaging of vascularization and perfusion

  • NIR fluorescence image-guided surgery has properties that make it a good candidate for clinical acceptance, as it fulfils a clinical need, is versatile and is fast

  • Targeted contrast agents, necessary for full evaluation of this technique, are in advanced stages of clinical approval

  • As novel contrast agents are developed and camera systems are optimized, the technique should prove its true clinical value

  • Well-designed outcomes studies have yet to be performed in the field

Abstract

Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better and less expensively than current standards. Optical imaging that exploits invisible near-infrared (NIR) fluorescent light (700–900 nm) has the potential to improve cancer surgery outcomes, minimize the time patients are under anaesthesia and lower health-care costs largely by way of its improved contrast and depth of tissue penetration relative to visible light. Accordingly, the past few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this Review, we introduce the concept of NIR fluorescence imaging for cancer surgery, examine the clinical trial literature to date and outline the key issues pertaining to imaging system and contrast agent optimization. Although NIR seems to be superior to many traditional imaging techniques, its incorporation into routine care of patients with cancer depends on rigorous clinical trials and validation studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanics of NIR fluorescence imaging.
Figure 2: Examples of intraoperative NIR fluorescence imaging.
Figure 3: Administration, biodistribution and clearance of an NIR fluorescent contrast agent.
Figure 4: NIR fluorescence imaging alone or in combination with other imaging modalities.

Similar content being viewed by others

References

  1. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 26, 4012–4021 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rizzo, M. et al. The effects of additional tumor cavity sampling at the time of breast-conserving surgery on final margin status, volume of resection, and pathologist workload. Ann. Surg. Oncol. 17, 228–234 (2010).

    Article  PubMed  Google Scholar 

  4. McLaughlin, S. A. Surgical management of the breast: breast conservation therapy and mastectomy. Surg. Clin. North Am. 93, 411–428 (2013).

    Article  PubMed  Google Scholar 

  5. Kubben, P. L. et al. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 12, 1062–1070 (2011).

    Article  PubMed  Google Scholar 

  6. Chicoine, M. R. M. et al. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir. Suppl. 109, 97–102 (2010).

    Article  Google Scholar 

  7. Mislow, J. M., Golby, A. J. & Black, P. M. Origins of intraoperative MRI. Neurosurg. Clin. N. Am. 20, 137–146 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gioux, S., Choi, H. S. & Frangioni, J. V. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol. Imaging 9, 237–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Schaafsma, B. E. et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 104, 323–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. NY Acad. Sci. 838, 29–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Olson, E. S. et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107, 4311–4316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohnishi, S. et al. Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping. Mol. Imaging 4, 172–181 (2005).

    Article  PubMed  Google Scholar 

  16. Emerson, D. K. et al. A receptor-targeted fluorescent radiopharmaceutical for multireporter sentinel lymph node imaging. Radiology 265, 186–193 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brouwer, O. R. et al. Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann. Surg. Oncol. 19, 1988–1994 (2012).

    Article  PubMed  Google Scholar 

  18. Hyde, D. et al. Hybrid FMT–CT imaging of amyloid-beta plaques in a murine Alzheimer's disease model. Neuroimage 44, 1304–1311 (2009).

    Article  PubMed  Google Scholar 

  19. Pham, W. et al. Crossing the blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. Neuroimage 28, 287–292 (2005).

    Article  PubMed  Google Scholar 

  20. Deguchi, J.-O. et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114, 55–62 (2006).

    Article  PubMed  Google Scholar 

  21. Sosnovik, D. E. et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115, 1384–1391 (2007).

    Article  PubMed  Google Scholar 

  22. Wunder, A., Tung, C.-H., Müller-Ladner, U., Weissleder, R. & Mahmood, U. In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum. 50, 2459–2465 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Choi, H. S. et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem. Int. Ed. Engl. 50, 6258–6263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Figueiredo, J.-L., Siegel, C., Nahrendorf, M. & Weissleder, R. Intraoperative near-infrared fluorescent cholangiography (NIRFC) in mouse models of bile duct injury. World J. Surg. 34, 336–343 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibbs-Strauss, S. L. et al. Molecular imaging agents specific for the annulus fibrosus of the intervertebral disk. Mol. Imaging 9, 128–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Phillips, B. T. et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction. Plast. Reconstr. Surg. 129, 778e–788e (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Hirche, C. et al. An experimental study to evaluate the Fluobeam 800 imaging system for fluorescence-guided lymphatic imaging and sentinel node biopsy. Surg. Innov. http://dx.doi.org/10.1177/1553350612468962.

  29. Gotoh, K. et al. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J. Surg. Oncol. 100, 75–79 (2009).

    Article  PubMed  Google Scholar 

  30. Troyan, S. L. et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mieog, J. S. et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann. Surg. Oncol. 18, 2483–2491 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crane, L. M. et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol. Imaging Biol. 13, 1043–1049 (2011).

    Article  PubMed  Google Scholar 

  33. Yamauchi, K., Nagafuji, H., Nakamura, T., Sato, T. & Kohno, N. Feasibility of ICG fluorescence-guided sentinel node biopsy in animal models using the HyperEye Medical System. Ann. Surg. Oncol. 18, 2042–2047 (2011).

    Article  PubMed  Google Scholar 

  34. Cahill, R. A. et al. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg. Endosc. 26, 197–204 (2011).

    Article  PubMed  Google Scholar 

  35. van der Poel, H. G., Buckle, T., Brouwer, O. R., Valdés Olmos, R. A. & van Leeuwen, F. W. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol. 60, 826–833 (2011).

    Article  PubMed  Google Scholar 

  36. Moroga, T. et al. Thoracoscopic segmentectomy with intraoperative evaluation of sentinel nodes for stage I non-small cell lung cancer. Ann. Thorac. Cardiovasc. Surg. 18, 89–94 (2012).

    Article  PubMed  Google Scholar 

  37. Yamashita, S.-I. et al. Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J. Thorac. Cardiovasc. Surg. 141, 141–144 (2011).

    Article  PubMed  Google Scholar 

  38. Borofsky, M. S. et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 111, 604–610 (2012).

    Article  PubMed  Google Scholar 

  39. Spinoglio, G. et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg. Endosc. 27, 2156–2162 (2012).

    Article  PubMed  Google Scholar 

  40. The Flare Foundation. Lighting the way for surgery [online], (2013).

  41. Achilefu, S. The insatiable quest for near-infrared fluorescent probes for molecular imaging. Angew. Chem. Int. Ed. Engl. 49, 9816–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bradley, R. S. & Thorniley, M. S. A review of attenuation correction techniques for tissue fluorescence. J. R. Soc. Interface 3, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Themelis, G., Yoo, J. S., Soh, K.-S., Schulz, R. & Ntziachristos, V. Real-time intraoperative fluorescence imaging system using light-absorption correction. J. Biomed. Opt. 14, 064012 (2009).

    Article  PubMed  Google Scholar 

  44. Valdés, P. A. et al. Quantitative, spectrally-resolved intraoperative fluorescence imaging. Sci. Rep. 2, 798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saager, R. B., Cuccia, D. J., Saggese, S. S., Kelly, K. M. K. & Durkin, A. J. Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. J. Biomed. Opt. 16, 126013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsui, A., Lee, B. T., Winer, J. H., Laurence, R. G. & Frangioni, J. V. Quantitative assessment of perfusion and vascular compromise in perforator flaps using a near-infrared fluorescence-guided imaging system. Plast. Reconstr. Surg. 124, 451–460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsui, A., Winer, J. H., Laurence, R. G. & Frangioni, J. V. Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography. Br. J. Surg. 98, 1725–1734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van der Vorst, J. R. et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer http://dx.doi.org/10.1002/cncr.28203.

  49. Mieog, J. S. D. et al. Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res. Treat. 128, 679–689 (2011).

    Article  PubMed  Google Scholar 

  50. Winer, J. H. et al. Intraoperative localization of insulinoma and normal pancreas using invisible near-infrared fluorescent light. Ann. Surg. Oncol. 17, 1094–1100 (2010).

    Article  PubMed  Google Scholar 

  51. Verbeek, F. P. et al. Intraoperative near-infrared fluorescence-guided identification of the ureters using low-dose methylene blue: a first-in-human experience. J. Urol. 190, 574–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Vorst, J. R. et al. Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue. World J. Gastrointest. Surg. 4, 180–184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. FDA. Product Insert: Indocyanine Green (IC-Green™) [online], (2013).

  54. FDA. Product Insert: 5-Aminolevulinic Acid (Levulan®Kerastick™) [online], (1999).

  55. Colditz, M. J. & Jeffree, R. L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: clinical, radiological and pathological studies. J. Clin. Neurosci. 19, 1471–1474 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Colditz, M. J., Leyen, K. V. & Jeffree, R. L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects. J. Clin. Neurosci. 19, 1611–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Moore, G. E., Peyton, W. T., French, L. A. & Walker, W. W. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J. Neurosurg. 5, 392–398 (1948).

    Article  CAS  PubMed  Google Scholar 

  59. Folli, S. et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl Acad. Sci. USA 89, 7973–7977 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Morton, D. L. & Bostick, P. J. Will the true sentinel node please stand? Ann. Surg. Oncol. 6, 12–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Giuliano, A. E., Kirgan, D. M., Guenther, J. M. & Morton, D. L. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann. Surg. 220, 391–398; discussion 398–401 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van den Berg, N. S. et al. Concomitant radio- and fluorescence-guided sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity using ICG-(99m)Tc-nanocolloid. Eur. J. Nucl. Med. Mol. Imaging 39, 1128–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. van der Vorst, J. R. et al. Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Ann. Surg. Oncol. 19, 4104–4111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Murawa, D., Hirche, C., Dresel, S. & Hünerbein, M. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br. J. Surg. 96, 1289–1294 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Hojo, T., Nagao, T., Kikuyama, M., Akashi, S. & Kinoshita, T. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast 19, 210–213 (2010).

    Article  PubMed  Google Scholar 

  67. Kitai, T., Inomoto, T., Miwa, M. & Shikayama, T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12, 211–215 (2005).

    Article  PubMed  Google Scholar 

  68. Sevick-Muraca, E. M. et al. Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246, 734–741 (2008).

    Article  PubMed  Google Scholar 

  69. Hirche, C., Murawa, D., Mohr, Z., Kneif, S. & Hünerbein, M. ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res. Treat. 121, 373–378 (2010).

    Article  PubMed  Google Scholar 

  70. Hirche, C. et al. Ultrastaging of colon cancer by sentinel node biopsy using fluorescence navigation with indocyanine green. Int. J. Colorectal Dis. 27, 319–324 (2012).

    Article  PubMed  Google Scholar 

  71. Ankersmit, M., van der Pas, M. H., van Dam, D. A. & Meijerink, W. J. Near infrared fluorescence lymphatic laparoscopy of the colon and mesocolon. Colorectal Dis. 13 (Suppl. 7), 70–73 (2011).

    Article  PubMed  Google Scholar 

  72. Hutteman, M. et al. Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann. Surg. Oncol. 18, 1006–1014 (2011).

    Article  PubMed  Google Scholar 

  73. Schaafsma, B. E. et al. Ex vivo sentinel node mapping in colon cancer combining blue dye staining and fluorescence imaging. J. Surg. Res. 183, 253–257 (2013).

    Article  PubMed  Google Scholar 

  74. van der Pas, M. H. et al. Laparoscopic sentinel lymph node identification in patients with colon carcinoma using a near-infrared dye: description of a new technique and feasibility study. J. Laparoendosc. Adv. Surg. Tech. 23, 367–371 (2013).

    Article  Google Scholar 

  75. Fujiwara, M., Mizukami, T., Suzuki, A. & Fukamizu, H. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J. Plast. Reconstr. Aesthet. Surg. 62, e373–e378 (2009).

    Article  PubMed  Google Scholar 

  76. van der Vorst, J. R. et al. Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. Br. J. Dermatol. 168, 93–98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van der Vorst, J. R. et al. Optimization of near-infrared fluorescent sentinel lymph node mapping in cervical cancer patients. Int. J. Gynecol. Cancer 21, 1472–1478 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Furukawa, N. et al. The usefulness of photodynamic eye for sentinel lymph node identification in patients with cervical cancer. Tumori 96, 936–940 (2010).

    Article  PubMed  Google Scholar 

  79. Crane, L. M. et al. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol. Oncol. 120, 291–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Hutteman, M. et al. Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer. Am. J. Obstet. Gynecol. 206, 89.e1–89.e5 (2012).

    Article  Google Scholar 

  81. Schaafsma, B. E. et al. Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecol. Oncol. 127, 126–130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brouwer, O. R. et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J. Nucl. Med. 53, 1034–1040 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Bredell, M. G. Sentinel lymph node mapping by indocyanin green fluorescence imaging in oropharyngeal cancer - preliminary experience. Head Neck Oncol. 2, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamashita, S. et al. Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer. Ann. Surg. Oncol. 19, 728–733 (2012).

    Article  PubMed  Google Scholar 

  85. Holloway, R. W. et al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol. Oncol. 126, 25–29 (2012).

    Article  PubMed  Google Scholar 

  86. Tajima, Y. et al. Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann. Surg. Oncol. 17, 1787–1793 (2010).

    Article  PubMed  Google Scholar 

  87. Tajima, Y. et al. Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer. Ann. Surg. 249, 58–62 (2009).

    Article  PubMed  Google Scholar 

  88. Kubota, K. et al. Application of the HyperEye Medical System for esophageal cancer surgery: a preliminary report. Surg. Today 43, 215–220 (2013).

    Article  PubMed  Google Scholar 

  89. Hutteman, M. et al. Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res. Treat. 127, 163–170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buckle, T. et al. A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21, 355101 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Vera, D. R., Wallace, A. M., Hoh, C. K. & Mattrey, R. F. A synthetic macromolecule for sentinel node detection: (99m)Tc-DTPA-mannosyl-dextran. J. Nucl. Med. 42, 951–959 (2001).

    CAS  PubMed  Google Scholar 

  92. Ting, R. et al. Fast 18F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel lymph nodes. Bioconjug. Chem. 21, 1811–1819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leong, S. P. L. et al. A phase 2 study of (99m)Tc-tilmanocept in the detection of sentinel lymph nodes in melanoma and breast cancer. Ann. Surg. Oncol. 18, 961–969 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. [No authors listed]. Agent approved for finding cancer lymph nodes. Cancer Discov. 3, OF8 (2013).

  95. Keereweer, S. et al. Optical image-guided surgery—where do we stand? Mol. Imaging Biol. 13, 199–207 (2011).

    Article  PubMed  Google Scholar 

  96. Sevick-Muraca, E. M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu. Rev. Med. 63, 217–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Horowitz, N. S. et al. Laparoscopy in the near infrared with ICG detects microscopic tumor in women with ovarian cancer: 0078. Int. J. Gynecol. Cancer 16, 616–623 (2006).

    Article  Google Scholar 

  98. Ishizawa, T. et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115, 2491–2504 (2009).

    Article  PubMed  Google Scholar 

  99. Uchiyama, K. K. et al. Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases. World J. Surg. 34, 2953–2959 (2010).

    Article  PubMed  Google Scholar 

  100. Peloso, A. et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB (Oxford) http://dx.doi.org/10.1111/hpb.12057.

  101. Ishizuka, M. et al. Intraoperative observation using a fluorescence imaging instrument during hepatic resection for liver metastasis from colorectal cancer. Hepatogastroenterology 59, 90–92 (2011).

    Google Scholar 

  102. Sahani, D. V. et al. Intraoperative US in patients undergoing surgery for liver neoplasms: comparison with MR imaging. Radiology 232, 810–814 (2004).

    Article  PubMed  Google Scholar 

  103. Satou, S. et al. Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J. Gastroenterol. http://dx.doi.org/10.1007/s00535-012-0709-6.

  104. Yokoyama, N. et al. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: preliminary results of a prospective study. Cancer 118, 2813–2819 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Hwang, S. W., Malek, A. M., Schapiro, R. & Wu, J. K. Intraoperative use of indocyanine green fluorescence videography for resection of a spinal cord hemangioblastoma. Neurosurgery 67 (Suppl. 3), ons300–ons303 (2010).

    PubMed  Google Scholar 

  106. Ferroli, P. et al. Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases. Acta Neurochir. Suppl. 109, 251–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Hojo, M. et al. Usefulness of tumor blood flow imaging by intraoperative ICG videoangiography in hemangioblastoma surgery. World Neurosurg. http://dx.doi.org/10.1016/j.wneu.2013.02.009.

  108. Keaveny, T. V., Fitzgerald, P. A. & McMullin, J. P. Selective parathyroid and pancreatic staining. Br. J. Surg. 56, 595–597 (1969).

    Article  CAS  PubMed  Google Scholar 

  109. Keaveny, T. V., Tawes, R. & Belzer, F. O. A new method for intra-operative identification of insulinomas. Br. J. Surg. 58, 233–234 (1971).

    Article  CAS  PubMed  Google Scholar 

  110. Roberts, D. W. et al. Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J. Neurosurg. 114, 595–603 (2011).

    Article  PubMed  Google Scholar 

  111. Jocham, D., Stepp, H. & Waidelich, R. Photodynamic diagnosis in urology: state-of-the-art. Eur. Urol. 53, 1138–1148 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Hsiung, P.-L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14, 454–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kriegmair, M. et al. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J. Urol. 155, 105–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Jichlinski, P. et al. Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg. Med. 20, 402–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Jichlinski, P. et al. Hexyl aminolevulinate fluorescence cystoscopy: new diagnostic tool for photodiagnosis of superficial bladder cancer—a multicenter study. J. Urol. 170, 226–229 (2003).

    Article  PubMed  Google Scholar 

  116. Wallner, C. et al. Causes of fecal and urinary incontinence after total mesorectal excision for rectal cancer based on cadaveric surgery: a study from the Cooperative Clinical Investigators of the Dutch total mesorectal excision trial. J. Clin. Oncol. 26, 4466–4472 (2008).

    Article  PubMed  Google Scholar 

  117. Miranda-Sousa, A. J., Davila, H. H., Lockhart, J. L., Ordorica, R. C. & Carrion, R. E. Sexual function after surgery for prostate or bladder cancer. Cancer Control 13, 179–187 (2006).

    Article  PubMed  Google Scholar 

  118. Flum, D. R., Koepsell, T., Heagerty, P., Sinanan, M. & Dellinger, E. P. Common bile duct injury during laparoscopic cholecystectomy and the use of intraoperative cholangiography: adverse outcome or preventable error? Arch. Surg. 136, 1287–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Selzman, A. A. & Spirnak, J. P. Iatrogenic ureteral injuries: a 20-year experience in treating 165 injuries. J. Urol. 155, 878–881 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Ishizawa, T. et al. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br. J. Surg. 97, 1369–1377 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Rasmussen, J. C. et al. Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence. Transl. Oncol. 3, 362–372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Choy, P. Y., Bissett, I. P., Docherty. J. G., Parry, B. R. & Merrie, A. E. Stapled versus handsewn methods for ileocolic anastomoses. Cochrane Database Systematic Reviews, Issue 3. Art. No.: CD004320. http://dx.doi.org/10.1002/14651858.CD004320.pub2.

  123. Hyman, N. N., Manchester, T. L., Osler, T. T., Burns, B. B. & Cataldo, P. A. Anastomotic leaks after intestinal anastomosis: it's later than you think. Ann. Surg. 245, 254–258 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kudszus, S., Roesel, C., Schachtrupp, A. & Höer, J. J. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch. Surg. 395, 1025–1030 (2010).

    Article  PubMed  Google Scholar 

  125. Pacheco, P. E., Hill, S. M., Henriques, S. M., Paulsen, J. K. & Anderson, R. C. The novel use of intraoperative laser-induced fluorescence of indocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructive surgery. Am. J. Surg. 205, 349–353 (2013).

    Article  PubMed  Google Scholar 

  126. Jafari, M. D. et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc. http://dx.doi.org/10.1007/s00464-013-2832-8.

  127. Holm, C., Mayr, M., Höfter, E. & Ninkovic, M. Perfusion zones of the DIEP flap revisited: a clinical study. Plast. Reconstr. Surg. 117, 37–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Lee, B. T. et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction. Plast. Reconstr. Surg. 126, 1472–1481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Newman, M. I. & Samson, M. C. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J. Reconstr. Microsurg. 25, 21–26 (2009).

    Article  PubMed  Google Scholar 

  130. Newman, M. I., Samson, M. C., Tamburrino, J. F. & Swartz, K. A. Intraoperative laser-assisted indocyanine green angiography for the evaluation of mastectomy flaps in immediate breast reconstruction. J. Reconstr. Microsurg. 26, 487–492 (2010).

    Article  PubMed  Google Scholar 

  131. Kumar, A. T. et al. Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast. Opt. Lett. 34, 2066–2068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Themelis, G., Yoo, J. S. & Ntziachristos, V. Multispectral imaging using multiple-bandpass filters. Opt. Lett. 33, 1023–1025 (2008).

    Article  PubMed  Google Scholar 

  133. Marshall, M. V., Draney, D., Sevick-Muraca, E. M. & Olive, D. M. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol. Imaging Biol. 12, 583–594 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Oliveira, S. et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol. Imaging 11, 33–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Tanaka, E. et al. Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light. Surgery 144, 39–48 (2008).

    Article  PubMed  Google Scholar 

  136. Scheuer, W., van Dam, G. M., Dobosz, M., Schwaiger, M. & Ntziachristos, V. Drug-based optical agents: infiltrating clinics at lower risk. Sci. Transl. Med. 4, 134ps11 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  138. Gaertner, F. C., Kessler, H., Wester, H. J., Schwaiger, M. & Beer, A. J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 39 (Suppl. 1), 126–138 (2012).

    Article  CAS  Google Scholar 

  139. Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J. A. & Hamers, R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 7, 1129–1135 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Bhatia, S., Frangioni, J. V., Hoffman, R. M., Iafrate, A. J. & Polyak, K. The challenges posed by cancer heterogeneity. Nat. Biotechnol. 30, 604–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Gibbs-Strauss, S. L. et al. Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol. Imaging 10, 91–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Sheth, R. A. et al. Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model. Gynecol. Oncol. 112, 616–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Urano, Y. et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med. 3, 110ra119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kosaka, N., Mitsunaga, M., Longmire, M. R., Choyke, P. L. & Kobayashi, H. Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int. J. Cancer 129, 1671–1677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dengel, L. T. et al. Intraoperative imaging guidance for sentinel node biopsy in melanoma using a mobile gamma camera. Ann. Surg. 253, 774–778 (2011).

    Article  PubMed  Google Scholar 

  147. Brouwer, O. R. et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys. Med. Biol. 57, 3123–3136 (2012).

    Article  PubMed  Google Scholar 

  148. Frangioni, J. V. Translating in vivo diagnostics into clinical reality. Nat. Biotechnol. 24, 909–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Yuasa, Y. et al. Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer. Ann. Surg. Oncol. 19, 486–493 (2011).

    Article  PubMed  Google Scholar 

  150. Miyashiro, I. et al. Intraoperative diagnosis using sentinel node biopsy with indocyanine green dye in gastric cancer surgery: an institutional trial by experienced surgeons. Ann. Surg. Oncol. 20, 542–546 (2012).

    Article  PubMed  Google Scholar 

  151. Miyashiro, I. et al. Laparoscopic detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging. Surg. Endosc. 25, 1672–1676 (2010).

    Article  PubMed  Google Scholar 

  152. Kusano, M. et al. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig. Surg. 25, 103–108 (2008).

    Article  PubMed  Google Scholar 

  153. Jeschke, S. et al. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology 80, 1080–1086 (2012).

    Article  PubMed  Google Scholar 

  154. Ishizawa, T. et al. Indocyanine green-fluorescent imaging of hepatocellular carcinoma during laparoscopic hepatectomy: an initial experience. Asian J. Endosc. Surg. 3, 42–45 (2010).

    Article  Google Scholar 

  155. Mitsuhashi, N. et al. Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J. Hepatobiliary Pancreat. Surg. 15, 508–514 (2008).

    Article  PubMed  Google Scholar 

  156. Hutteman, M. et al. Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy. Eur. Surg. Res. 47, 90–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tagaya, N. et al. Intraoperative exploration of biliary anatomy using fluorescence imaging of indocyanine green in experimental and clinical cholecystectomies. J. Hepatobiliary Pancreat. Surg. 17, 595–600 (2010).

    Article  Google Scholar 

  158. Aoki, T. et al. Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J. Hepatobiliary Pancreat. Surg. 17, 590–594 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NIH (award numbers R01-CA-115296, R01-EB-011523, R01-EB-010022 and R21-CA-130297), The Dutch Cancer Society (grant UL2010-4732) and The Center for Translational Molecular Medicine (DeCoDe project, grant 03O-101). The content is solely the responsibility of the authors and does not necessarily represent the official views of these agencies.

Author information

Authors and Affiliations

Authors

Contributions

A. L. Vahrmeijer and M. Hutteman researched the data for the Review. A. L. Vahrmeijer, M. Hutteman and J. V. Frangioni wrote the manuscript. All authors contributed to the discussion of the manuscript content and edited the manuscript before submission.

Corresponding author

Correspondence to Alexander L. Vahrmeijer.

Ethics declarations

Competing interests

J. V. Frangioni is a founding member of the following companies: Curadel, Curadel ResVet Imaging, Curadel Surgical Innovations, and the founder and chairman of the FLARE Foundation, which licenses the FLARE technology from Beth Israel Deaconess Medical Center, Harvard Medical School. J. V. Frangioni has elected to surrender postmarket royalties for FLARE, which he would otherwise be entitled to as inventor, and has elected to donate premarket proceeds to the FLARE Foundation.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahrmeijer, A., Hutteman, M., van der Vorst, J. et al. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10, 507–518 (2013). https://doi.org/10.1038/nrclinonc.2013.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.123

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer