Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the treatment of neurofibromatosis-associated tumours

Key Points

  • Neurofibromatosis type 1 and type 2 are distinct genetic disorders characterized by an increased incidence of tumour development

  • Identification of the NF1 and NF2 genes has resulted in the discovery of new targets for therapeutic drug design

  • Numerous small-animal models of NF1-associated and NF2-associated tumours have been developed

  • Current investigational therapies for tumours arising in individuals with NF1 and NF2 target both deregulated growth control pathways as well as the tumour microenvironment

Abstract

Neurofibromatosis (NF) comprises two distinct genetic disorders—neurofibromatosis type 1 and 2 (NF1 and NF2)—in which affected individuals develop both benign and malignant tumours. NF1 results from germline mutations in the NF1 gene that encodes neurofibromin, while NF2 results from germline mutations in the NF2 gene that encodes merlin (or schwannomin). The major tumour types arising in individuals with NF1 include neurofibromas, malignant peripheral nerve sheath tumours, and gliomas, whereas NF2 is characterized by the formation of schwannomas, meningiomas, and ependymomas. With the identification of the NF1 and NF2 genes and the generation of robust preclinical mouse models of NF-associated neoplasms, novel treatments that specifically target the growth control pathways deregulated in these tumours have been discovered, some of which are now being tested in clinical trials in individuals with NF1 and NF2. In this Review, we will highlight the key clinical features of NF1 and NF2 and the advances in future clinical management based on an improved understanding of the function of the NF1 and NF2 genes and the development of small-animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumours arising in individuals with NF1.
Figure 2: Tumours arising in individuals with NF2.
Figure 3: Neurofibromin and merlin growth control pathways.
Figure 4: Targets for NF therapeutic drug design.

Similar content being viewed by others

References

  1. Ferner, R. E. The neurofibromatoses. Pract. Neurol. 10, 82–93 (2010).

    Article  PubMed  Google Scholar 

  2. Houshmandi, S. S. & Gutmann, D. H. All in the family: using inherited cancer syndromes to understand de-regulated cell signaling in brain tumors. J. Cell. Biochem. 102, 811–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Stumpf, D. A. et al. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch. Neurol. 45, 575–578 (1987).

    Google Scholar 

  4. Baser, M. E. et al. Evaluation of clinical diagnostic criteria for neurofibromatosis 2. Neurology 59, 1759–1765 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Rasmussen, S. A. & Friedman, J. M. NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151, 33–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Huson, S. M., Compston, D. A., Clark, P. & Harper, P. S. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J. Med. Genet. 26, 704–711 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evans, D. G. et al. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol. Neurotol. 26, 93–97 (2005).

    Article  PubMed  Google Scholar 

  8. Evans, D. G. et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am. J. Med. Genet. A 152A, 327–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. De Luca, A. et al. Novel and recurrent mutations in the NF1 gene in Italian patients with neurofibromatosis type 1. Hum. Mutat. 23, 629 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Evans, D. G. & Wallace, A. An update on age related mosaic and offspring risk in neurofibromatosis 2 (NF2). J. Med. Genet. 46, 792 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Rasmussen, S. A., Yang, Q. & Friedman, J. M. Mortality in neurofibromatosis 1: an analysis using U. S. death certificates. Am. J. Hum. Genet. 68, 1110–1118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilding, A. et al. Life expectancy in hereditary cancer predisposing diseases: an observational study. J. Med. Genet. 49, 264–269 (2012).

    Article  PubMed  Google Scholar 

  13. McGaughran, J. M. et al. A clinical study of type 1 neurofibromatosis in north west England. J. Med. Genet. 36, 197–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman, J. M. & Birch, P. H. Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am. J. Med. Genet. 70, 138–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Plotkin, S. R. et al. Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS ONE 7, e35711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans, D. G. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Listernick, R., Charrow, J., Greenwald, M. & Mets, M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J. Pediatr. 125, 63–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, R. A., Gerson, L. P., Axelson, K. A., Riccardi, V. M. & Whitford, R. P. von Recklinghausen neurofibromatosis. II. Incidence of optic gliomata. Ophthalmology 91, 929–935 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Gutmann, D. H. et al. Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology 59, 759–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Matsui, I. et al. Neurofibromatosis type 1 and childhood cancer. Cancer 72, 2746–2754 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Side, L. et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med. 336, 1713–1720 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Stiller, C. A., Chessells, J. M. & Fitchett, M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br. J. Cancer 70, 969–972 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walther, M. M., Herring, J., Enquist, E., Keiser, H. R. & Linehan, W. M. von Recklinghausen's disease and pheochromocytomas. J. Urol. 162, 1582–1586 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Vlenterie, M. et al. Pheochromocytoma and gastrointestinal stromal tumors in patients with neurofibromatosis type I. Am. J. Med. 126, 174–180 (2013).

    Article  PubMed  Google Scholar 

  25. Sung, L. et al. Neurofibromatosis in children with Rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma study IV. J. Pediatr. 144, 666–668 (2004).

    Article  PubMed  Google Scholar 

  26. Sharif, S. et al. Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J. Med. Genet. 44, 481–484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jouhilahti, E. M. et al. The development of cutaneous neurofibromas. Am. J. Pathol. 178, 500–505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Boyd, K. P., Korf, B. R. & Theos, A. Neurofibromatosis type 1. J. Am. Acad. Dermatol. 61, 1–14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rosser, T. & Packer, R. J. Neurofibromas in children with neurofibromatosis 1. J. Child. Neurol. 17, 585–591 (2002).

    Article  PubMed  Google Scholar 

  30. Prada, C. E. et al. Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J. Pediatr. 160, 461–467 (2012).

    Article  PubMed  Google Scholar 

  31. Ducatman, B. S., Scheithauer, B. W., Piepgras, D. G., Reiman, H. M. & Ilstrup, D. M. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 57, 2006–2021 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez, F. J. et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J. Neuropathol. Exp. Neurol. 67, 240–249 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Listernick, R., Charrow, J., Greenwald, M. J. & Esterly, N. B. Optic gliomas in children with neurofibromatosis type 1. J. Pediatr. 114, 788–792 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Listernick, R., Darling, C., Greenwald, M., Strauss, L. & Charrow, J. Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J. Pediatr. 127, 718–722 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Listernick, R., Charrow, J. & Gutmann, D. H. Intracranial gliomas in neurofibromatosis type 1. Am. J. Med. Genet. 89, 38–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Habiby, R., Silverman, B., Listernick, R. & Charrow, J. Precocious puberty in children with neurofibromatosis type 1. J. Pediatr. 126, 364–367 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Molloy, P. T. et al. Brainstem tumors in patients with neurofibromatosis type 1: a distinct clinical entity. Neurology 45, 1897–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Ullrich, N. J., Raja, A. I., Irons, M. B., Kieran, M. W. & Goumnerova, L. Brainstem lesions in neurofibromatosis type 1. Neurosurgery 61, 762–767 (2007).

    Article  PubMed  Google Scholar 

  39. Pollack, I. F., Shultz, B. & Mulvihill, J. J. The management of brainstem gliomas in patients with neurofibromatosis 1. Neurology 46, 1652–1660 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Vinchon, M., Soto-Ares, G., Ruchoux, M. M. & Dhellemmes, P. Cerebellar gliomas in children with NF1: pathology and surgery. Childs Nerv. Syst. 16, 417–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Maris, J. M. et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 79, 1438–1446 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Sharif, S. et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J. Clin. Oncol. 24, 2570–2575 (2006).

    Article  PubMed  Google Scholar 

  43. Parry, D. M. et al. Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am. J. Med. Genet. 52, 450–461 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Mautner, V. F. et al. The neuroimaging and clinical spectrum of neurofibromatosis 2. Neurosurgery 38, 880–886 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. National Institutes of Health Consensus Development Conference Statement on Acoustic Neuroma, December 11–13, 1991. The Consensus Development Panel. Arch. Neurol. 51, 201–207 (1994).

  46. Sobel, R. A. Vestibular (acoustic) schwannomas: histologic features in neurofibromatosis 2 and in unilateral cases. J. Neuropathol. Exp. Neurol. 52, 106–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Mautner, V. F., Tatagiba, M., Guthoff, R., Samii, M. & Pulst, S. M. Neurofibromatosis 2 in the pediatric age group. Neurosurgery 33, 92–96 (1993).

    CAS  PubMed  Google Scholar 

  48. Asthagiri, A. R. et al. Neurofibromatosis type 2. Lancet 373, 1974–1986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evans, D. G. et al. A clinical study of type 2 neurofibromatosis. Q. J. Med. 84, 603–618 (1992).

    CAS  PubMed  Google Scholar 

  50. MacCollin, M. et al. Diagnostic criteria for schwannomatosis. Neurology 64, 1838–1845 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hulsebos, T. J. et al. Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am. J. Hum. Genet. 80, 805–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Plotkin, S. R. et al. Update from the 2011 International Schwannomatosis Workshop: from genetics to diagnostic criteria. Am. J. Med. Genet. A 161, 405–416 (2013).

    Article  Google Scholar 

  53. Antinheimo, J. et al. Proliferation potential and histological features in neurofibromatosis 2-associated and sporadic meningiomas. J. Neurosurg. 87, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Mautner, V. F. et al. Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am. J. Roentgenol. 165, 951–955 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Hagel, C. et al. Clinical presentation, immunohistochemistry and electron microscopy indicate neurofibromatosis type 2-associated gliomas to be spinal ependymomas. Neuropathology 32, 611–616 (2012).

    Article  PubMed  Google Scholar 

  56. Plotkin, S. R. et al. Spinal ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients. J. Neurosurg. Spine 14, 543–547 (2011).

    Article  PubMed  Google Scholar 

  57. Stemmer-Rachamimov, A. O. et al. Universal absence of merlin, but not other ERM family members, in schwannomas. Am. J. Pathol. 151, 1649–1654 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kimura, N. et al. Neurofibromin and NF1 gene analysis in composite pheochromocytoma and tumors associated with von Recklinghausen's disease. Mod. Pathol. 15, 183–188 (2002).

    Article  PubMed  Google Scholar 

  59. Gutmann, D. H., Cole, J. L., Stone, W. J., Ponder, B. A. & Collins, F. S. Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type I. Genes Chromosomes Cancer 10, 55–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, G. F. et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Buchberg, A. M., Cleveland, L. S., Jenkins, N. A. & Copeland, N. G. Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature 347, 291–294 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Basu, T. N. et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713–715 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, G. A. et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843–849 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. DeClue, J. E. et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69, 265–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Bollag, G. et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat. Genet. 12, 144–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Dasgupta, B., Yi, Y., Chen, D. Y., Weber, J. D. & Gutmann, D. H. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 65, 2755–2760 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Jessen, W. J. et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Invest. 123, 340–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Tong, J., Hannan, F., Zhu, Y., Bernards, A. & Zhong, Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5, 95–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Dasgupta, B., Dugan, L. L. & Gutmann, D. H. The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J. Neurosci. 23, 8949–8954 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brown, J. A., Gianino, S. M. & Gutmann, D. H. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J. Neurosci. 30, 5579–5589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. McClatchey, A. I. Merlin and ERM proteins: unappreciated roles in cancer development? Nat. Rev. Cancer 3, 877–883 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 1, 63–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Curto, M., Cole, B. K., Lallemand, D., Liu, C. H. & McClatchey, A. I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 177, 893–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. James, M. F. et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol. Cell Biol. 29, 4250–4261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levine, S. M., Levine, E., Taub, P. J. & Weinberg, H. Electrosurgical excision technique for the treatment of multiple cutaneous lesions in neurofibromatosis type I. J. Plast. Reconstr. Aesthet. Surg. 61, 958–962 (2008).

    Article  PubMed  Google Scholar 

  81. Robertson, K. A. et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 13, 1218–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mautner, V. F. et al. Clinical relevance of positron emission tomography and magnetic resonance imaging in the progression of internal plexiform neurofibroma in NF1. Anticancer Res. 27, 1819–1822 (2007).

    CAS  PubMed  Google Scholar 

  83. Ferner, R. E. et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann. Oncol. 19, 390–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Tsai, L. L. et al. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J. Neurooncol. 108, 469–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Karabatsou, K., Kiehl, T. R., Wilson, D. M., Hendler, A. & Guha, A. Potential role of 18fluorodeoxyglucose-positron emission tomography/computed tomography in differentiating benign neurofibroma from malignant peripheral nerve sheath tumor associated with neurofibromatosis 1. Neurosurgery 65 (Suppl. 4), A160–A170 (2009).

    Article  PubMed  Google Scholar 

  86. Lakkaraju, A., Patel, C. N., Bradley, K. M. & Scarsbrook, A. F. PET/CT in primary musculoskeletal tumours: a step forward. Eur. Radiol. 20, 2959–2972 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Moretti, V. M., Crawford, E. A., Staddon, A. P., Lackman, R. D. & Ogilvie, C. M. Early outcomes for malignant peripheral nerve sheath tumor treated with chemotherapy. Am. J. Clin. Oncol. 34, 417–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Porter, D. E. et al. Survival in malignant peripheral nerve sheath tumours: a comparison between sporadic and neurofibromatosis type 1-associated tumours. Sarcoma 2009, 756395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Listernick, R., Louis, D. N., Packer, R. J. & Gutmann, D. H. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann. Neurol. 41, 143–149 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Evans, D. G. et al. Consensus recommendations to accelerate clinical trials for neurofibromatosis type 2. Clin. Cancer Res. 15, 5032–5039 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Evans, D. G. et al. Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br. J. Neurosurg. 19, 5–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Rowe, J., Radatz, M. & Kemeny, A. Radiosurgery for type II neurofibromatosis. Prog. Neurol. Surg. 21, 176–182 (2008).

    Article  PubMed  Google Scholar 

  93. Flickinger, J. C., Kondziolka, D., Niranjan, A. & Lunsford, L. D. Results of acoustic neuroma radiosurgery: an analysis of 5 years' experience using current methods. J. Neurosurg. 94, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Plotkin, S. R. et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol. Neurotol. 33, 1046–1052 (2012).

    Article  PubMed  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  96. Karajannis, M. A. et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol. 14, 1163–1170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mayes, D. A. et al. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res. 71, 4675–4685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, J. et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13, 105–116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bajenaru, M. L. et al. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res. 63, 8573–8577 (2003).

    CAS  PubMed  Google Scholar 

  101. Zhu, Y. et al. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132, 5577–5588 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dasgupta, B., Li, W., Perry, A. & Gutmann, D. H. Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res. 65, 236–245 (2005).

    CAS  PubMed  Google Scholar 

  103. Cichowski, K. et al. Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172–2176 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Vogel, K. S. et al. Mouse tumor model for neurofibromatosis type 1. Science 286, 2176–2179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Le, D. T. et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103, 4243–4250 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617–1630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev. 13, 978–986 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalamarides, M. et al. Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene 30, 2333–2344 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060–1065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gutmann, D. H. & Giovannini, M. Mouse models of neurofibromatosis 1 and 2. Neoplasia 4, 279–290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bajenaru, M. L. et al. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell Biol. 22, 5100–5113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Riccardi, V. M. Cutaneous manifestation of neurofibromatosis: cellular interaction, pigmentation, and mast cells. Birth Defects Orig. Artic. Ser. 17, 129–145 (1981).

    CAS  PubMed  Google Scholar 

  113. Wu, J. et al. Preclincial testing of sorafenib and RAD001 in the Nf(flox/flox);DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr. Blood Cancer 58, 173–180 (2012).

    Article  PubMed  Google Scholar 

  114. Hegedus, B. et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res. 68, 1520–1528 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Mo, W. et al. CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 152, 1077–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Johannessen, C. M. et al. TORC1 is essential for NF1-associated malignancies. Curr. Biol. 18, 56–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Warrington, N. M. et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 70, 5717–5727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sabha, N. et al. Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells. PLoS ONE 7, e39412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ammoun, S. et al. ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro Oncol. 12, 834–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gutmann, D. H., Blakeley, J. O., Korf, B. R. & Packer, R. J. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin. Investig. Drugs 22, 443–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  122. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  123. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  124. Baser, M. E., Rai, H., Wallace, A. J. & Evans, D. G. Neurofibromatosis 2 (NF2) and malignant mesothelioma in a man with a constitutional NF2 missense mutation. Fam. Cancer 4, 321–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Baser, M. E. et al. Neurofibromatosis 2 and malignant mesothelioma. Neurology 59, 290–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Woodruff, J. M., Selig, A. M., Crowley, K. & Allen, P. W. Schwannoma (neurilemoma) with malignant transformation. A rare, distinctive peripheral nerve tumor. Am. J. Surg. Pathol. 18, 882–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Gupta, A., Cohen, B. H., Ruggieri, P., Packer, R. J. & Phillips, P. C. Phase I study of thalidomide for the treatment of plexiform neurofibroma in neurofibromatosis 1. Neurology 60, 130–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Packer, R. J. et al. Plexiform neurofibromas in NF1: toward biologic-based therapy. Neurology 58, 1461–1470 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Widemann, B. C. et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J. Clin. Oncol. 24, 507–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Babovic-Vuksanovic, D. et al. Phase II trial of pirfenidone in adults with neurofibromatosis type 1. Neurology 67, 1860–1862 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Babovic-Vuksanovic, D. et al. Phase I trial of pirfenidone in children with neurofibromatosis 1 and plexiform neurofibromas. Pediatr. Neurol. 36, 293–300 (2007).

    Article  PubMed  Google Scholar 

  132. Kissil, J. L. et al. What's new in neurofibromatosis? Proceedings from the 2009 NF Conference: new frontiers. Am. J. Med. Genet. A 152A, 269–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Widemann, B. C. et al. Phase II study of the mTOR inhibitor sirolimus for nonprogressive NF1-associated plexiform neurofibromas: a Neurofibromatosis Consortium study [abstract e13601]. J. Clin. Oncol. 28 (Suppl.), e13601 (2010).

    Article  Google Scholar 

  134. Jakacki, R. I. et al. Phase I trial of pegylated interferon-α-2b in young patients with plexiform neurofibromas. Neurology 76, 265–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, A. et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr. Blood Cancer 60, 396–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Albritton, K. H. et al. Phase II study of erlotinib in metastatic or unresectable malignant peripheral nerve sheath tumors (MPNST) [abstract]. J. Clin. Oncol. 24 (Suppl.), a9518 (2006).

    Google Scholar 

  137. Schuetze, S. et al. Results of a sarcoma alliance for research through collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma [abstract]. J. Clin. Oncol. 28 (Suppl.), a10009 (2009).

    Google Scholar 

  138. Koenig, M. K. et al. Topical rapamycin therapy to alleviate the cutaneous manifestations of tuberous sclerosis complex: a double-blind, randomized, controlled trial to evaluate the safety and efficacy of topically applied rapamycin. Drugs R. D. 12, 121–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kwon, C. H. et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 68, 3286–3294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tischler, A. S., Shih, T. S., Williams, B. O. & Jacks, T. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr. Pathol. 6, 323–335 (1995).

    Article  PubMed  Google Scholar 

  142. Jongsma, J. et al. A conditional mouse model for malignant mesothelioma. Cancer Cell 13, 261–271 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, made substantial contributions to the discussion of the content, wrote the article and reviewed and edited it prior to submission.

Corresponding author

Correspondence to David H. Gutmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, A., Gutmann, D. Advances in the treatment of neurofibromatosis-associated tumours. Nat Rev Clin Oncol 10, 616–624 (2013). https://doi.org/10.1038/nrclinonc.2013.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.144

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer