Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secondary revascularization after CABG surgery

Abstract

CABG surgery is an effective way to improve symptoms and prognosis in patients with advanced coronary atherosclerotic disease. Despite multiple improvements in surgical technique and patient treatment, graft failure after CABG surgery occurs in a time-dependent fashion, particularly in the second decade after the intervention, in a substantial number of patients because of atherosclerotic progression and saphenous-vein graft (SVG) disease. Until 2010, repeat revascularization by either percutaneous coronary intervention (PCI) or surgical techniques was performed in these high-risk patients in the absence of specific recommendations in clinical practice guidelines, and within a culture of inadequate communication between cardiac surgeons and interventional cardiologists. Indeed, some of the specific technologies developed to reduce procedural risk, such as embolic protection devices for SVG interventions, are largely underused. Additionally, the implementation of secondary prevention, which reduces the need for reintervention in these patients, is still suboptimal. In this Review, graft failure after CABG surgery is examined as a clinical problem from the perspective of holistic patient management. Issues such as the substrate and epidemiology of graft failure, the choice of revascularization modality, the specific problems inherent in repeat CABG surgery and PCI, and the importance of secondary prevention are discussed.

Key Points

  • Patients who have previously undergone CABG surgery can require early or late repeat revascularization with PCI or CABG surgery because of graft failure or disease progression in native coronary arteries

  • Obtaining evidence on repeat revascularization in patients with a history of CABG surgery from randomized clinical trials is difficult; recommendations on secondary revascularization were absent from clinical guidelines until 2010

  • Particular surgical and interventional techniques have been developed to circumvent the high procedural risk associated with repeat interventions performed in either native vessels or surgical grafts

  • Adequate implementation of diagnostic (for example, multidetector angiography) and therapeutic (embolic protection devices) techniques in patients who have previously undergone CABG surgery remains suboptimal

  • Optimization of secondary prevention in patients with a history of CABG surgery reduces the need for repeat revascularization by slowing the progression of atherosclerosis, and prolonging the patency of grafts

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-related graft patency (or freedom from graft occlusion) for ITA grafts and SVG.12
Figure 2: Assessment of the results of CABG surgery with FFR.
Figure 3: EPDs used in percutaneous revascularization of saphenous vein grafts.
Figure 4: Efficacy and safety of DES implantation in stenoses of saphenous-vein grafts.

Similar content being viewed by others

References

  1. Task Force on Myocardial Revascularization of the European Society of Cardiology et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

  2. Mohr, F. W. et al. Four-year follow-up of the syntax trial: optimal revascularization strategy in patients with three-vessel disease [abstract TCT-27]. J. Am. Coll. Cardiol. 58 (Suppl. S), B8 (2011).

    Google Scholar 

  3. Sabik, J. F. 3rd, Blackstone, E. H., Gillinov, A. M., Smedira, N. G. & Lytle, B. W. Occurrence and risk factors for reintervention after coronary artery bypass grafting. Circulation 114 (Suppl. I), I454–I460 (2006).

    PubMed  Google Scholar 

  4. Tatoulis, J., Buxton, B. F. & Fuller, J. A. Patencies of 2127 arterial to coronary conduits over 15 years. Ann. Thorac. Surg. 77, 93–101 (2004).

    Article  PubMed  Google Scholar 

  5. Maroto, L. C., Silva, J. A. & Rodríguez, J. E. Assessment of patients with previous CABG. EuroIntervention 5 (Suppl. D), D25–D29 (2009).

    PubMed  Google Scholar 

  6. Escaned, J. Secondary coronary revascularisation: an emerging issue. EuroIntervention 5 (Suppl. D), D6–D13 (2009).

    PubMed  Google Scholar 

  7. Sergeant, P. The future of coronary bypass surgery. Eur. J. Cardiothorac. Surg. 26 (Suppl. 1), S4–S6 (2004).

    PubMed  Google Scholar 

  8. Jukema, J. W., Verschuren, J. J. W., Ahmed, T. A. N. & Quax, P. H. A. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat. Rev. Cardiol. 9, 53–62 (2012).

    Article  CAS  Google Scholar 

  9. Jukema, J. W., Verschuren, J. J. W., Ahmed, T. A. N. & Quax, P. H. A. Restenosis after PCI. Part 2: prevention and therapy. Nat. Rev. Cardiol. 9, 79–90 (2012).

    Article  CAS  Google Scholar 

  10. Noyez, L. The evolution of repeat coronary artery surgery. EuroIntervention 5 (Suppl. D), D30–D33 (2009).

    PubMed  Google Scholar 

  11. Jeremy, J. Y., Kaura, A., Sablayrolles, J. L. & Angelini, G. D. in Coronary stenosis. Imaging, structure and physiology, Ch. 32 Saphenous vein graft attrition (eds Escaned, J. & Serruys, P. W.) 459–473 (Europa Editions, Toulouse, 2010).

    Google Scholar 

  12. Goldman, S. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44, 2149–2156 (2004).

    Article  PubMed  Google Scholar 

  13. Riley, R. F., Don, C. W., Powell, W., Maynard, C. & Dean, L. S. Trends in coronary revascularization in the United States from 2001 to 2009: recent declines in percutaneous coronary intervention volumes. Circ. Cardiovasc. Qual. Outcomes 4, 193–197 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lenzen, M. J. et al. Management and outcome of patients with established coronary artery disease: the Euro Heart Survey on coronary revascularization. Eur. Heart J. 26, 1169–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Brilakis, E. S. et al. Percutaneous coronary intervention in native arteries versus bypass grafts in prior coronary artery bypass grafting patients: a report from the National Cardiovascular Data Registry. JACC Cardiovasc. Interv. 4, 844–850 (2011).

    Article  PubMed  Google Scholar 

  16. Brener, S. J. et al. Predictors of revascularization method and long-term outcome of percutaneous coronary intervention or repeat coronary bypass surgery in patients with multivessel coronary disease and previous coronary bypass surgery. Eur. Heart J. 27, 413–418 (2006).

    Article  PubMed  Google Scholar 

  17. Brener, S. J. et al. Propensity analysis of long-term survival after surgical or percutaneous revascularization in patients with multivessel coronary artery disease and high-risk features. Circulation 109, 2290–2295 (2004).

    Article  PubMed  Google Scholar 

  18. Algarni, K. D., Elhenawy, A. M., Maganti, M., Collins, S. & Yau, T. M. Decreasing prevalence but increasing importance of left ventricular dysfunction and reoperative surgery in prediction of mortality in coronary artery bypass surgery: trends over 18 years. J. Thorac. Cardiovasc. Surg. http://dx.doi.org/10.1016/j.jtcvs.2011.06.043.

  19. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Escaned, J. et al. Significance of automated stenosis detection during quantitative angiography. Insights gained from intracoronary ultrasound imaging. Circulation 94, 966–972 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Jimenéz-Quevedo, P. et al. Vessel shrinkage as a sign of atherosclerosis progression in type 2 diabetes: a serial intravascular ultrasound analysis. Diabetes 58, 209–214 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sergeant, P., Blackstone, E., Meyns, B., Stockman, B. & Jashari, R. First cardiological or cardiosurgical reintervention for ischemic heart disease after primary coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 14, 480–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Colmenarez, H. & Escaned, J. The distinct role of secondary prevention in patients with prior coronary interventions. EuroIntervention 5 (Suppl. D), D131–D138 (2009).

    PubMed  Google Scholar 

  24. Sabik, J. F. 3rd, Blackstone, E. H., Houghtaling, P. L., Walts, P. A. & Lytle, B. W. Is reoperation still a risk factor in coronary artery bypass surgery? Ann. Thorac. Surg. 80, 1719–1727 (2005).

    Article  PubMed  Google Scholar 

  25. Morrison, D. A. et al. Percutaneous coronary intervention versus repeat bypass surgery for patients with medically refractory myocardial ischemia: AWESOME randomized trial and registry experience with post-CABG patients. J. Am. Coll. Cardiol. 40, 1951–1954 (2002).

    Article  PubMed  Google Scholar 

  26. Morrison, D. A. et al. Percutaneous coronary intervention versus coronary artery bypass graft surgery for patients with medically refractory myocardial ischemia and risk factors for adverse outcomes with bypass: a multicenter, randomized trial. J. Am. Coll. Cardiol. 38, 143–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Spiliotopoulos, K., Maganti, M., Brister, S. & Rao, V. Changing pattern of reoperative coronary artery bypass grafting: a 20-year study. Ann. Thorac. Surg. 92, 40–46 (2011).

    Article  PubMed  Google Scholar 

  28. Cole, J. H. et al. Outcomes of repeat revascularization in diabetic patients with prior coronary surgery. J. Am. Coll. Cardiol. 40, 1968–1975 (2002).

    Article  PubMed  Google Scholar 

  29. Patel, M. R., Dehmer, G. J., Hirshfeld, J. W., Smith, P. K. & Spertus, J. A. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 appropriateness criteria for coronary revascularization: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 119, 1330–1352 (2009).

    Article  PubMed  Google Scholar 

  30. Levine, G. N. et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 124, e574–e651 (2011).

    PubMed  Google Scholar 

  31. Loop, F. D. et al. Trends in selection and results of coronary artery reoperations. Ann. Thorac. Surg. 36, 380–388 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Marcos-Alberca, P. et al. Multidetector computed tomography in previous coronary artery bypass grafting: Implications for secondary revascularisation. EuroIntervention 5 (Suppl. D), D37–D44 (2009).

    PubMed  Google Scholar 

  33. Kamdar, A. R. et al. Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann. Thorac. Surg. 85, 1239–1245 (2008).

    Article  PubMed  Google Scholar 

  34. Gasparovic, H. et al. Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur. J. Cardiothorac. Surg. 28, 244–249 (2005).

    Article  PubMed  Google Scholar 

  35. Nikolaou, K. et al. Dual-source computed tomography of the chest in the surgical planning of repeated cardiac surgery. J. Cardiovasc. Surg. (Torino) 53, 247–255 (2012).

    CAS  Google Scholar 

  36. Mishra, Y. K. et al. Ten-year experience with single-vessel and multivessel reoperative off-pump coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 135, 527–532 (2008).

    Article  PubMed  Google Scholar 

  37. Azoury, F. M., Gillinov, A. M., Lytle, B. W., Smedira, N. G. & Sabik, J. F. Off-pump reoperative coronary artery bypass grafting by thoracotomy: patient selection and operative technique. Ann. Thorac. Surg. 71, 1959–1963 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Borger, M. A. et al. Reoperative coronary bypass surgery: effect of patent grafts and retrograde cardioplegia. J. Thorac. Cardiovasc. Surg. 121, 83–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Fazel, S. et al. Myocardial protection in reoperative coronary artery bypass grafting. J. Card. Surg. 19, 291–295 (2004).

    Article  PubMed  Google Scholar 

  40. Doty, J. R. et al. Reoperative midcab grafting: 3-year clinical experience. Eur. J. Cardiothorac. Surg. 13, 641–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Subramanian, V. A. Clinical experience with minimally invasive reoperative coronary bypass surgery. Eur. J. Cardiothorac. Surg. 10, 1058–1062 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Tabata, S. et al. Minimally invasive direct coronary artery bypass grafting for third-time coronary artery revascularization. Ann. Thorac. Cardiovasc. Surg. 13, 417–420 (2007).

    PubMed  Google Scholar 

  43. El Oumeiri, B. et al. Recycling of internal thoracic arteries in reoperative coronary surgery: in-hospital and midterm results. Ann. Thorac. Surg. 91, 1165–1168 (2011).

    Article  PubMed  Google Scholar 

  44. Noyez, L. & Lacquet, L. K. Recycling of the internal mammary artery in coronary reoperation. Ann. Thorac. Surg. 55, 597–599 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, D. X. et al. Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization results from a fully integrated hybrid catheterization laboratory/operating room. J. Am. Coll. Cardiol. 53, 232–241 (2009).

    Article  PubMed  Google Scholar 

  46. Babiker, A. et al. Rescue percutaneous intervention for acute complications of coronary artery surgery. EuroIntervention 5 (Suppl. D), D64–D69 (2009).

    PubMed  Google Scholar 

  47. Coolong, A. et al. Saphenous vein graft stenting and major adverse cardiac events: a predictive model derived from a pooled analysis of 3958 patients. Circulation 117, 790–797 (2008).

    Article  PubMed  Google Scholar 

  48. Varghese, I. et al. Impact on contrast, fluoroscopy, and catheter utilization from knowing the coronary artery bypass graft anatomy before diagnostic coronary angiography. Am. J. Cardiol. 101, 1729–1732 (2008).

    Article  PubMed  Google Scholar 

  49. Sanmartin, M. et al. Transradial cardiac catheterization in patients with coronary bypass grafts: feasibility analysis and comparison with transfemoral approach. Catheter. Cardiovasc. Interv. 67, 580–584 (2006).

    Article  PubMed  Google Scholar 

  50. Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    Article  PubMed  Google Scholar 

  51. Gaemperli, O. et al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J. Nucl. Med. 48, 696–703 (2007).

    Article  PubMed  Google Scholar 

  52. Tonino, P. A. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Echavarría-Pinto, M. & Escaned, J. Use of fractional flow reserve in contemporary scenarios of coronary revascularization. Minerva Med. 102, 399–415 (2011).

    PubMed  Google Scholar 

  54. Rodés-Cabau, J. et al. Comparison of plaque sealing with paclitaxel-eluting stents versus medical therapy for the treatment of moderate nonsignificant saphenous vein graft lesions: the moderate vein graft lesion stenting with the taxus stent and intravascular ultrasound (VELETI) pilot trial. Circulation 120, 1978–1986 (2009).

    Article  PubMed  Google Scholar 

  55. Bech, G. J. et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103, 2928–2934 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Mintz, G. S. & Weissman, N. J. Intravascular ultrasound in the drug-eluting stent era. J. Am. Coll. Cardiol. 48, 421–429 (2006).

    Article  PubMed  Google Scholar 

  57. Gonzalo, N., Serruys, P. W., Piazza, N. & Regar, E. Optical coherence tomography (OCT) in secondary revascularisation: stent and graft assessment. EuroIntervention 5 (Suppl. D), D93–D100 (2009).

    PubMed  Google Scholar 

  58. Galassi, A. R. et al. In-hospital outcomes of percutaneous coronary intervention in patients with chronic total occlusion: insights from the ERCTO (European Registry of Chronic Total Occlusion) registry. EuroIntervention 7, 472–479 (2011).

    Article  PubMed  Google Scholar 

  59. Claessen, B. E. et al. Evaluation of the effect of a concurrent chronic total occlusion on long-term mortality and left ventricular function in patients after primary percutaneous coronary intervention. JACC Cardiovasc. Interv. 2, 1128–1134 (2009).

    Article  PubMed  Google Scholar 

  60. Lee, M. S. et al. Saphenous vein graft intervention. JACC Cardiovasc. Interv. 4, 831–843 (2011).

    Article  PubMed  Google Scholar 

  61. Baruah, D. K. Covered stent to treat saphenous venous graft perforation-—a case report. Catheter. Cardiovasc. Interv. 76, 844–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez-Antolin, R. A. et al. Successful sealing of an angioplasty-related saphenous vein graft rupture with a PTFE-covered stent. J. Invasive Cardiol. 12, 589–593 (2000).

    CAS  PubMed  Google Scholar 

  63. Baim, D. S. et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 105, 1285–1290 (2002).

    Article  PubMed  Google Scholar 

  64. Stone, G. W. et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. Circulation 108, 548–553 (2003).

    Article  PubMed  Google Scholar 

  65. Carrozza, J. P. Jr et al. Randomized evaluation of the TriActiv balloon-protection flush and extraction system for the treatment of saphenous vein graft disease. J. Am. Coll. Cardiol. 46, 1677–1683 (2005).

    Article  PubMed  Google Scholar 

  66. Mauri, L. et al. The PROXIMAL trial: proximal protection during saphenous vein graft intervention using the Proxis Embolic Protection System: a randomized, prospective, multicenter clinical trial. J. Am. Coll. Cardiol. 50, 1442–1449 (2007).

    Article  PubMed  Google Scholar 

  67. Kereiakes, D. J. et al. A novel filter-based distal embolic protection device for percutaneous intervention of saphenous vein graft lesions: results of the AMEthyst randomized controlled trial. JACC Cardiovasc. Interv. 1, 248–257 (2008).

    Article  PubMed  Google Scholar 

  68. Dixon, S. R. et al. A randomized, controlled trial of saphenous vein graft intervention with a filter-based distal embolic protection device: TRAP trial. J. Interv. Cardiol. 18, 233–241 (2005).

    Article  PubMed  Google Scholar 

  69. Porto, I. et al. Filter no-reflow during percutaneous coronary intervention of saphenous vein grafts: Incidence, predictors and effect of the type of protection device. EuroIntervention 7, 955–961 (2011).

    Article  PubMed  Google Scholar 

  70. Iakovou, I. et al. Relation of final lumen dimensions in saphenous vein grafts after stent implantation to outcome. Am. J. Cardiol. 93, 963–968 (2004).

    Article  PubMed  Google Scholar 

  71. Hong, Y. J. et al. Outcome of undersized drug-eluting stents for percutaneous coronary intervention of saphenous vein graft lesions. Am. J. Cardiol. 105, 179–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Al-Lamee, R. et al. Clinical and angiographic outcomes after percutaneous recanalization of chronic total saphenous vein graft occlusion using modern techniques. Am. J. Cardiol. 106, 1721–1727 (2010).

    Article  PubMed  Google Scholar 

  73. Hoffmann, R. et al. Follow-up results after interventional treatment of infarct-related saphenous vein graft occlusion. Coron. Artery Dis. 21, 61–64 (2010).

    Article  PubMed  Google Scholar 

  74. Fiorina, C. et al. Early experience with a new approach for percutaneous intervention of totally occluded saphenous vein graft: is the flow the best thrombolytic? EuroIntervention 6, 461–466 (2010).

    Article  PubMed  Google Scholar 

  75. Mehta, S. K. et al. Utilization of distal embolic protection in saphenous vein graft interventions (an analysis of 19,546 patients in the American College of Cardiology–National Cardiovascular Data Registry). Am. J. Cardiol. 100, 1114–1118 (2007).

    Article  PubMed  Google Scholar 

  76. Webb, L. A., Dixon, S. R., Safian, R. D. & O'Neill, W. W. Usefulness of embolic protection devices during saphenous vein graft intervention in a nonselected population. J. Interv. Cardiol. 18, 73–75 (2005).

    Article  PubMed  Google Scholar 

  77. Badhey, N. et al. Contemporary use of embolic protection devices in saphenous vein graft interventions: insights from the stenting of saphenous vein grafts trial. Catheter. Cardiovasc. Interv. 76, 263–269 (2010).

    Article  PubMed  Google Scholar 

  78. Brener, S. J., Ellis, S. G., Apperson-Hansen, C., Leon, M. B. & Topol, E. J. Comparison of stenting and balloon angioplasty for narrowings in aortocoronary saphenous vein conduits in place for more than five years. Am. J. Cardiol. 79, 13–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez-Recalde, A. et al. Safety and efficacy of drug-eluting stents versus bare-metal stents in saphenous vein grafts lesions: a meta-analysis. EuroIntervention 6, 149–160 (2010).

    Article  PubMed  Google Scholar 

  80. Brilakis, E. S. et al. Frequency and predictors of drug-eluting stent use in saphenous vein bypass graft percutaneous coronary interventions: a report from the American college of Cardiology national Cardiovascular Data CathPCI registry. JACC Cardiovasc. Interv. 3, 1068–1073 (2010).

    Article  PubMed  Google Scholar 

  81. Brilakis, E. S. et al. A randomized controlled trial of a paclitaxel-eluting stent versus a similar bare-metal stent in saphenous vein graft lesions the SOS (Stenting Of Saphenous Vein Grafts) trial. J. Am. Coll. Cardiol. 53, 919–928 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Vermeersch, P. et al. Increased late mortality after sirolimus-eluting stents versus bare-metal stents in diseased saphenous vein grafts: results from the randomized DELAYED RRISC trial. J. Am. Coll. Cardiol. 50, 261–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Jeger, R. V. et al. Drug-eluting stents compared with bare metal stents improve late outcome after saphenous vein graft but not after large native vessel interventions. Cardiology 112, 49–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Mehilli, J. et al. Drug-eluting versus bare-metal stents in saphenous vein graft lesions (ISAR-CABG): a randomised controlled superiority trial. Lancet 378, 1071–1078 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Stankovic, G. et al. Randomized evaluation of polytetrafluoroethylene-covered stent in saphenous vein grafts: the Randomized Evaluation of polytetrafluoroethylene COVERed stent in Saphenous vein grafts (RECOVERS) trial. Circulation 108, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Schächinger, V. et al. A randomized trial of polytetrafluoroethylene-membrane-covered stents compared with conventional stents in aortocoronary saphenous vein grafts. J. Am. Coll. Cardiol. 42, 1360–1369 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. Roukoz, B. A. H. et al. Initial U.S. experience with membrane-covered stents in the treatment of saphenous vein graft lesions: roll-in phase of the BARRICADE trial [abstract 879-1]. J. Am. Coll. Cardiol. 41 (Suppl. 1), 82 (2003).

    Article  Google Scholar 

  88. Turco, M. A. et al. Pivotal, randomized U.S. study of the Symbiot covered stent system in patients with saphenous vein graft disease: eight-month angiographic and clinical results from the Symbiot III trial. Catheter. Cardiovasc. Interv. 68, 379–388 (2006).

    Article  PubMed  Google Scholar 

  89. Vaknin-Assa, H., Assali, A. & Kornowski, R. Preliminary experiences using the MGuard stent platform in saphenous vein graft lesions. Catheter. Cardiovasc. Interv. 74, 1055–1057 (2009).

    Article  PubMed  Google Scholar 

  90. Colombo, A., Almagor, Y., Gaspar, J. & Vonderwalde, C. The pericardium covered stent (PCS). EuroIntervention 5, 394–399 (2009).

    Article  PubMed  Google Scholar 

  91. Gruberg, L. et al. Percutaneous revascularization of the internal mammary artery graft: short- and long-term outcomes. J. Am. Coll. Cardiol. 35, 944–948 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Köckeritz, U., Reynen, K., Knaut, M. & Strasser, R. H. Results of angioplasty (with or without stent) at the site of a narrowed coronary anastomosis of the left internal mammary artery graft or via the internal mammary artery. Am. J. Cardiol. 93, 1531–1533 (2004).

    Article  PubMed  Google Scholar 

  93. Sharma, A. K. et al. Clinical outcomes following stent implantation in internal mammary artery grafts. Catheter. Cardiovasc. Interv. 59, 436–441 (2003).

    Article  PubMed  Google Scholar 

  94. Buch, A. N. et al. Comparison of outcomes between bare metal stents and drug-eluting stents for percutaneous revascularization of internal mammary grafts. Am. J. Cardiol. 98, 722–724 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Sharma, A. K. et al. Percutaneous interventions in radial artery grafts: clinical and angiographic outcomes. Catheter. Cardiovasc. Interv. 59, 172–175 (2003).

    Article  PubMed  Google Scholar 

  96. Goube, P. et al. Radial artery graft stenosis treated by percutaneous intervention. Eur. J. Cardiothorac. Surg. 37, 697–703 (2010).

    Article  PubMed  Google Scholar 

  97. Graham, I. et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 28, 2375–2414 (2007).

    Article  PubMed  Google Scholar 

  98. Smith, S. C. Jr et al. AHA/ACCF Secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation 124, 2458–2473 (2011).

    Article  PubMed  Google Scholar 

  99. McAlister, F. A. et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers are beneficial in normotensive atherosclerotic patients: a collaborative meta-analysis of randomized trials. Eur. Heart J. 33, 505–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Belcher, P. R. et al. Are we negating the benefits of CABG by forgetting secondary prevention? J. Hum. Hypertens. 16, 691–697 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Rodriguez-Granillo, G. A. et al. Meta-analysis of the studies assessing temporal changes in coronary plaque volume using intravascular ultrasound. Am. J. Cardiol. 99, 5–10 (2007).

    Article  PubMed  Google Scholar 

  102. Rodriguez-Granillo, G. A. et al. Long-term effect of perindopril on coronary atherosclerosis progression (from the PERindopril's Prospective Effect on Coronary aTherosclerosis by Angiography and IntraVascular Ultrasound Evaluation [PERSPECTIVE] study). Am. J. Cardiol. 100, 159–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. The Post Coronary Artery Bypass Graft Trial investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. N. Engl. J. Med. 336, 153–162 (1997).

  104. Hong, Y. J. et al. Disease progression in nonintervened saphenous vein graft segments: a serial intravascular ultrasound analysis. J. Am. Coll. Cardiol. 53, 1257–1264 (2009).

    Article  PubMed  Google Scholar 

  105. Domanski, M. J. et al. Prognostic factors for atherosclerosis progression in saphenous vein grafts: the Postcoronary Artery Bypass Graft (Post-CABG) trial. J. Am. Coll. Cardiol. 36, 1877–1883 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Turley, A. J. et al. Secondary prevention following coronary artery bypass grafting has improved but remains sub-optimal: the need for targeted follow-up. Interact. Cardiovasc. Thorac. Surg. 7, 231–234 (2008).

    Article  PubMed  Google Scholar 

  107. Fox, D. J., Kibiro, M., Eichhofer, J. & Curzen, N. P. Patients undergoing coronary revascularisation: a missed opportunity for secondary prevention? Postgrad. Med. J. 81, 401–403 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martin, T. N., Irving, R. J., Sutherland, M., Sutherland, K. & Bloomfield, P. Improving secondary prevention in coronary bypass patients: closing the audit loop. Heart 91, 456–459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Carruthers, K. F. et al. Contemporary management of acute coronary syndromes: does the practice match the evidence? The Global Registry of Acute Coronary Events (GRACE). Heart 91, 290–298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. EUROASPIRE II Study Group. Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries; principal results from EUROASPIRE II Euro Heart Survey Programme. Eur. Heart J. 22, 554–572 (2001).

  111. Birkhead, J. S. et al. Improving care for patients with acute coronary syndromes: initial results from the National Audit of Myocardial Infarction Project (MINAP). Heart 90, 1004–1009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Escaned, J. et al. Trends and contexts in European cardiology practice for the next 15 years. The Madrid Declaration: a report from the European Conference on the Future of Cardiology, Madrid, 2–3 June 2006. Eur. Heart J. 28, 634–637 (2007).

    Article  PubMed  Google Scholar 

  113. Colombo, A. & Latib, A. Surgeons and interventional cardiologists in a collaborative environment. J. Am. Coll. Cardiol. 53, 242–243 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges Professor Jean Marco and Dr Wiliam Wijns (chairmen of PCR and EuroPCR, respectively), the European Association of Percutaneous Cardiovascular Interventions, the European Association of Cardiothoracic Surgery, and the ESC Working Group on Cardiovascular Surgery for their important and continued support of the concept of secondary revascularization made in institutional scientific programs over the past 4 years.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escaned, J. Secondary revascularization after CABG surgery. Nat Rev Cardiol 9, 540–549 (2012). https://doi.org/10.1038/nrcardio.2012.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing