Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel therapeutic targets for hypertension

Abstract

Despite the existence of established, effective therapies for hypertension, new methods of blood pressure and cardiovascular risk reduction are still needed. Novel approaches are targeted towards treating resistant hypertension, improving blood-pressure control, and achieving further risk reduction beyond blood-pressure lowering. Modulation of the renin–angiotensin–aldosterone system (RAAS) provides the rationale for current antihypertensive therapies, including the relatively new agents eplerenone and aliskiren. Novel targets for antihypertensive therapy are also likely to be RAAS-related. The stimulation of angiotensin II type 2 receptors, or supplementation with renalase, could counteract the effects of angiotensin II type 1 receptor stimulation or catecholamine release. Combined angiotensin-converting-enzyme and neutral endopeptidase blockade decreases blood pressure, but is associated with a high incidence of angioedema. Aldosterone synthase inhibitors might improve tolerability in aldosterone antagonism. A (pro)renin-receptor blocker could prevent the deleterious angiotensin-independent actions of renin that are not inhibited by aliskiren. Finally, new minimally invasive surgical procedures have revived the concept of renal denervation, and could be a therapeutic option for patients with resistant hypertension. All of these strategies are exciting prospects, but which of them will prove valuable in clinical setting remains to be discovered.

Key Points

  • Most current effective agents for blood-pressure control, and possible future antihypertensives, are related to inhibition of the renin–angiotensin–aldosterone system

  • The unmet needs for antihypertensive therapy include the treatment of resistant hypertension, improving blood-pressure control, and achieving further cardiovascular risk reduction

  • The efficacy of newly approved medications for high blood pressure (aldosterone receptor blockers and renin inhibitors) still needs to be confirmed, particularly in reducing mortality

  • Novel targets for antihypertensive therapy could include the angiotensin II type 2 receptor, neutral endopeptidase, aldosterone synthase, renalase, the (pro)renin receptor, and renal innervations

  • The development of hybrid molecules and fixed-dose combinations of existing therapies are likely to prevail in future hypertension research

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The renin–angiotensin–aldosterone system: vasoactive balance and targets for antihypertensive therapy.

Similar content being viewed by others

References

  1. Redwood, H. Hypertension, society, and public policy. Eur. Heart J. 9 (Suppl. B), B13–B18 (2007).

    Google Scholar 

  2. Havlik, R. J. et al. Antihypertensive drug therapy and survival by treatment status in a national survey. Hypertension 13, I28–I32 (1989).

    CAS  PubMed  Google Scholar 

  3. Mancia, G. et al. 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 25, 1105–1187 (2007).

    CAS  PubMed  Google Scholar 

  4. Messerli, F. H. et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann. Intern. Med. 144, 884–893 (2006).

    PubMed  Google Scholar 

  5. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group. Effects of intensive blood pressure control in type 2 diabetes. N. Engl. J. Med. 362, 1575–1585 (2010).

  6. Wolf-Maier, K. et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 43, 10–17 (2004).

    CAS  PubMed  Google Scholar 

  7. Unger, T. The role of the renin–angiotensin system in the development of cardiovascular disease. Am. J. Cardiol. 89, 3A–9A (2002).

    CAS  PubMed  Google Scholar 

  8. Weber, K. T. & Brilla, C. G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83, 1849–1865 (1991).

    CAS  PubMed  Google Scholar 

  9. Hansson, L. et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPP) randomised trial. Lancet 353, 611–616 (1999).

    CAS  PubMed  Google Scholar 

  10. Hansson, L. et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 354, 1751–1756 (1999).

    CAS  PubMed  Google Scholar 

  11. Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342, 145–153 (2000).

    CAS  PubMed  Google Scholar 

  12. Dahlöf, B. et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359, 995–1003 (2000).

    Google Scholar 

  13. Julius, S. et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 363, 2022–2031 (2004).

    CAS  PubMed  Google Scholar 

  14. Yusuf, S. et al. for the ONTARGET Investigators. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    CAS  PubMed  Google Scholar 

  15. Elliott, W. J. & Meyer, P. M. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369, 201–207 (2007).

    CAS  PubMed  Google Scholar 

  16. Kintscher, U. ONTARGET, TRANSCEND, and PRoFESS: new-onset diabetes, atrial fibrillation, and left ventricular hypertrophy. J. Hypertens. 27 (Suppl. 2), S36–S39 (2009).

    CAS  Google Scholar 

  17. Kurtz, T. W. Beyond the classic angiotensin-receptor-blocker profile. Nat. Clin. Pract. Cardiovasc. Med. 5 (Suppl. 1), S19–S26 (2008).

    CAS  PubMed  Google Scholar 

  18. Kurtz, T. W. & Klein, U. Next generation multifunctional angiotensin receptor blockers. Hypertens. Res. 32, 826–834 (2009).

    CAS  PubMed  Google Scholar 

  19. Zaman, M. A., Oparil, S. & Calhoun, D. A. Drugs targeting the renin-angiotensin-aldosterone system. Nat. Rev. Drug. Discov. 1, 621–636 (2002).

    CAS  PubMed  Google Scholar 

  20. US FDA. Drugs@FDA: FDA Approved Drug Products [online], (2010).

  21. DrugBase. Index Nominum [online], (2010).

  22. Nguyen, G. et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schefe, J. H. et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ. Res. 99, 1355–1366 (2006).

    CAS  PubMed  Google Scholar 

  24. Schefe, J. H., Unger, T. & Funke-Kaiser, H. PLZF and the (pro)renin receptor. J. Mol. Med. 86, 623–627 (2008).

    CAS  PubMed  Google Scholar 

  25. Funke-Kaiser, H., Zollmann, F. S., Schefe, J. H. & Unger, T. Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens. Res. 33, 98–104 (2009).

    PubMed  Google Scholar 

  26. Corti, R., Burnett, J. C. Jr, Rouleau, J. L., Ruschitzka, F. & Luscher, T. F. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 104, 1856–1862 (2001).

    CAS  PubMed  Google Scholar 

  27. Rompe, F. et al. Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension 55, 924–931 (2010).

    CAS  PubMed  Google Scholar 

  28. Steckelings, U. M., Kaschina, E. & Unger, T. The AT2 receptor—a matter of love and hate. Peptides 26, 1401–1409 (2005).

    CAS  PubMed  Google Scholar 

  29. Goldblatt, H., Haas, E. & Lamfrom, H. Antirenin in man and animals. Trans. Assoc. Am. Physicians 64, 122–125 (1951).

    CAS  PubMed  Google Scholar 

  30. Michel, J. B. Renin–angiotensin vaccine: old story, new project 'efficacy versus safety'. Clin. Sci. (Lond.) 107, 145–147 (2004).

    CAS  Google Scholar 

  31. Brown, M. J. et al. Randomized double-blind placebo-controlled study of an angiotensin immunotherapeutic vaccine (PMD3117) in hypertensive subjects. Clin. Sci. (Lond.) 107, 167–173 (2004).

    CAS  Google Scholar 

  32. Ambühl, P. M. et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and Phase I safety and immunogenicity. J. Hypertens. 25, 63–72 (2007).

    PubMed  Google Scholar 

  33. Tissot, A. C. et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet 371, 821–827 (2008).

    CAS  PubMed  Google Scholar 

  34. Cytos Biotechnology. Cytos Biotechnology updates on the development of the hypertension vaccine CYT006-AngQb [online], (2009).

  35. Funke-Kaiser, H., Reinemund, J., Steckelings, U. M. & Unger, T. Adapter proteins and promoter regulation of the angiotensin II type 2 receptor—implications for cardiac pathophysiology. J. Renin. Angiotensin. Aldosterone. Syst. 11, 7–17 (2010).

    CAS  PubMed  Google Scholar 

  36. Wruck, C. J. et al. Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler. Thromb. Vasc. Biol. 25, 57–64 (2005).

    CAS  PubMed  Google Scholar 

  37. Nouet, S. & Nahmias, C. Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol. Metab. 11, 1–6 (2006).

    Google Scholar 

  38. Horiuchi, M., Akishita, M. & Dzau, V. J. Molecular and cellular mechanism of angiotensin II-mediated apoptosis. Endocr. Res. 24, 307–314 (1998).

    CAS  PubMed  Google Scholar 

  39. Seyedi, N., Xu, X., Nasjletti, A. & Hintze, T. H. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26, 164–170 (1995).

    CAS  PubMed  Google Scholar 

  40. Powell, J. S. et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245, 186–188 (1989).

    CAS  PubMed  Google Scholar 

  41. Wan, Y. et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J. Med. Chem. 47, 5995–6008 (2004).

    CAS  PubMed  Google Scholar 

  42. Kaschina, E. et al. Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation 118, 2523–2532 (2008).

    CAS  PubMed  Google Scholar 

  43. Bosnyak, S. et al. Stimulation of angiotensin AT2 receptors by the non-peptide agonist, Compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats. Br. J. Pharmacol. 159, 709–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Intengan, H. D. & Schiffrin, E. L. Vasopeptidase inhibition has potent effects on blood pressure and resistance arteries in stroke-prone spontaneously hypertensive rats. Hypertension 35, 1221–1225 (2000).

    CAS  PubMed  Google Scholar 

  45. Lévy, B. I. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin–angiotensin system. Circulation 109, 8–13 (2004).

    PubMed  Google Scholar 

  46. Campbell, D. J. Vasopeptidase inhibition: a double-edged sword? Hypertension 41, 383–389 (2003).

    CAS  PubMed  Google Scholar 

  47. Trippodo, N. C. et al. Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am. J. Hypertens. 11, 363–372 (1998).

    CAS  PubMed  Google Scholar 

  48. d'Uscio, L. V., Quaschning, T., Burnett, J. C. Jr & Lüscher, T. F. Vasopeptidase inhibition prevents endothelial dysfunction of resistance arteries in salt-sensitive hypertension in comparison with single ACE inhibition. Hypertension 37, 28–33 (2001).

    CAS  PubMed  Google Scholar 

  49. Ruilope, L. M. et al. Randomized double-blind comparison of omapatrilat with amlodipine in mild-to-moderate hypertension [abstract A063]. Am. J. Hypertens. 13, 134A (2000).

    Google Scholar 

  50. Norton, G. R. et al. Sustained antihypertensive actions of a dual angiotensin-converting enzyme neutral endopeptidase inhibitor, sampatrilat, in black hypertensive subjects. Am. J. Hypertens. 12, 563–571 (1999).

    CAS  PubMed  Google Scholar 

  51. Packer, M. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106, 920–926 (2002).

    CAS  PubMed  Google Scholar 

  52. Tabrizchi, R. Omapatrilat. Bristol-Myers Squibb. Curr. Opin. Investig. Drugs 2, 1414–1422 (2001).

    CAS  PubMed  Google Scholar 

  53. Jeunemaitre, X. et al. Efficacy and tolerance of spironolactone in essential hypertension. Am. J. Cardiol. 60, 820–825 (1987).

    CAS  PubMed  Google Scholar 

  54. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  55. Whaley-Connell, A., Johnson. M. S. & Sowers, J. R. Aldosterone: role in the cardiometabolic syndrome and resistant hypertension. Prog. Cardiovasc. Dis. 52, 401–409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kidambi, S. et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 49, 704–711 (2007).

    CAS  PubMed  Google Scholar 

  57. Calhoun, D. A., Nishizaka, M. K., Zaman, M. A., Thakkar, R. B. & Weissmann, P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40, 892–896 (2002).

    CAS  PubMed  Google Scholar 

  58. White, W. B. et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension 41, 1021–1026 (2003).

    CAS  PubMed  Google Scholar 

  59. Williams, G. H. et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am. J. Cardiol. 93, 990–996 (2004).

    CAS  PubMed  Google Scholar 

  60. Weinberger, M. H. et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am. Heart. J. 150, 426–433 (2005).

    CAS  PubMed  Google Scholar 

  61. Krum, H. et al. Efficacy of eplerenone added to renin–angiotensin blockade in hypertensive patients. Hypertension 40, 117–123 (2002).

    CAS  PubMed  Google Scholar 

  62. Pitt, B. et al. for the EPHESUS Investigators. Eplerenone reduces mortality 30 days after randomization following acute myocardial infarction in patients with left ventricular systolic dysfunction and heart failure. J. Am. Coll. Cardiol. 46, 425–431 (2005).

    CAS  PubMed  Google Scholar 

  63. Struthers, A., Krum, H. & Williams, G. H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin. Cardiol. 31, 153–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Weinberger, M. H., Roniker, B., Krause, S. L. & Weiss, R. J. Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am. J. Hypertens. 15, 709–716 (2002).

    CAS  PubMed  Google Scholar 

  65. Fiebeler, A. et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 111, 3087–3094 (2005).

    CAS  PubMed  Google Scholar 

  66. Huang, B. S., White, R. A., Ahmad, M., Jeng, A. Y. & Leenen, F. H. Central infusion of aldosterone synthase inhibitor prevents sympathetic hyperactivity and hypertension by central Na+ in Wistar rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R166–R172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lea, W. B. et al. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75, 936–944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schumacher, C. for Speedel. Aldosterone synthase inhibitors SPP2000 [online], (2008).

  69. Mulder, P. et al. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone. Eur. Heart J. 29, 2171–2179 (2008).

    CAS  PubMed  Google Scholar 

  70. Funder, J. W. Mineralocorticoid receptors: distribution and activation. Heart Fail. Rev. 10, 15–22 (2005).

    CAS  PubMed  Google Scholar 

  71. Menard, J., Campbell, D. J., Azizi, M. & Gonzales, M. F. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation 96, 3072–3078 (1997).

    CAS  PubMed  Google Scholar 

  72. Nussberger, J., Wuerzner, G., Jensen, C. & Brunner, H. R. Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension 39, E1–E8 (2002).

    CAS  PubMed  Google Scholar 

  73. Stanton, A., Jensen, C., Nussberger, J. & O'Brien, E. Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42, 1137–1143 (2003).

    CAS  PubMed  Google Scholar 

  74. Andersen, K. et al. Comparative efficacy and safety of aliskiren, an oral direct renin inhibitor, and ramipril in hypertension: a 6-month, randomized, double-blind trial. J. Hypertens. 26, 589–599 (2008).

    CAS  PubMed  Google Scholar 

  75. Schmieder, R. E. et al. Long-term antihypertensive efficacy and safety of the oral direct renin inhibitor aliskiren: a 12-month randomized, double-blind comparator trial with hydrochlorothiazide. Circulation 119, 417–425 (2009).

    CAS  PubMed  Google Scholar 

  76. Dietz, R. et al. Effects of the direct renin inhibitor aliskiren and atenolol alone or in combination in patients with hypertension. J. Renin Angiotensin Aldosterone Syst. 9, 163–175 (2008).

    CAS  PubMed  Google Scholar 

  77. Novartis. Clinical trial results database. A Phase IIa, double-blind, randomized, parallel-design, four-week study to investigate the efficacy and safety of two different doses of the renin-inhibitor spp635 once daily in type ii diabetic patients with mild to moderate hypertension and albuminuria [online], (2009).

  78. Sealey, J. E. & Laragh, J. H. Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am. J. Hypertens. 20, 587–597 (2007).

    CAS  PubMed  Google Scholar 

  79. Danser, A. H. The increase in renin during renin inhibition: does it result in harmful effects by the (pro)renin receptor? Hypertens. Res. 33, 4–10 (2009).

    PubMed  Google Scholar 

  80. Stanton, A. V. et al. Aliskiren monotherapy does not cause paradoxical blood pressure rises: meta-analysis of data from 8 clinical trials. Hypertension 55, 54–60 (2010).

    CAS  PubMed  Google Scholar 

  81. Huang, Y., Noble, N. A., Zhang, J., Xu, C. & Border, W. A. Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int. 72, 45–52 (2007).

    CAS  PubMed  Google Scholar 

  82. Schefe, J. H. et al. Prorenin engages the (pro)renin receptor like renin and both ligand activities are unopposed by aliskiren. J. Hypertens. 26, 1787–1794 (2008).

    CAS  PubMed  Google Scholar 

  83. Feldman, D. L. et al. Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension 52, 130–136 (2008).

    CAS  PubMed  Google Scholar 

  84. Ichihara, A. et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J. Clin. Invest. 114, 1128–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ichihara, A. et al. Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 47, 894–900 (2006).

    CAS  PubMed  Google Scholar 

  86. Susic, D., Zhou, X., Frohlich, E. D., Lippton, H. & Knight, M. Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am. J. Physiol. Heart Circ. Physiol. 295, H1117–H1121 (2008).

    CAS  PubMed  Google Scholar 

  87. Ichihara, A. et al. Possible roles of human (pro)renin receptor suggested by recent clinical and experimental findings. Hypertens. Res. 33, 177–180 (2010).

    CAS  PubMed  Google Scholar 

  88. Xu, J. et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest. 115, 1275–1280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, G. et al. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation 117, 1277–1282 (2008).

    CAS  PubMed  Google Scholar 

  90. Ghosh, S. S. et al. Effect of renalase inhibition on blood pressure. J. Am. Soc. Nephrol. 17, 208A (2006).

  91. Desir, G. V. Regulation of blood pressure and cardiovascular function by renalase. Kidney Int. 76, 366–370 (2009).

    CAS  PubMed  Google Scholar 

  92. Zhao, Q. et al. Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J. Mol. Med. 85, 877–885 (2007).

    CAS  PubMed  Google Scholar 

  93. Desir, G. V. et al. Downregulation of cardiac renalase expression in CKD, and protective effect of renalase in acute coronary syndrome. J. Am. Soc. Nephrol. 18, 149A (2007).

    Google Scholar 

  94. Luft, F. C. Renalase, a catecholamine-metabolizing hormone from the kidney. Cell Metab. 1, 358–360 (2005).

    CAS  PubMed  Google Scholar 

  95. Dibona, G. F. & Esler, M. D. Translational medicine: the antihypertensive effect of renal denervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R245–R253 (2009).

    PubMed  Google Scholar 

  96. Schlaich, M. P. et al. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54, 1195–1201 (2009).

    CAS  PubMed  Google Scholar 

  97. Nozawa, T. et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessels 16, 51–56 (2002).

    PubMed  Google Scholar 

  98. Morrissey, D. M., Brookes, V. S. & Cooke, W. T. Sympathectomy in the treatment of hypertension; review of 122 cases. Lancet 1, 403–408 (1953).

    CAS  PubMed  Google Scholar 

  99. Smithwick, R. H. & Thompson, J. E. Splanchnicectomy for essential hypertension; results in 1,266 cases. JAMA 152, 1501–1504 (1953).

    CAS  Google Scholar 

  100. Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    PubMed  Google Scholar 

  101. Schlaich, M. P., Sobotka, P. A., Krum, H., Lambert, E. & Esler, M. D. Renal sympathetic-nerve ablation for uncontrolled hypertension. N. Engl. J. Med. 361, 932–934 (2009).

    CAS  PubMed  Google Scholar 

  102. Paulis, L. & Simko, F. LA419, a novel nitric oxide donor, prevents cardiac remodeling via the endothelial nitric oxide synthase pathway: NO donors as a means of antiremodeling. Hypertension 50, 1009–1011 (2007).

    CAS  PubMed  Google Scholar 

  103. Ruiz-Hurtado, G., Fernandez-Velasco, M., Mourelle, M. & Delgado, C. LA419, a novel nitric oxide donor, prevents pathological cardiac remodeling in pressure-overloaded rats via endothelial nitric oxide synthase pathway regulation. Hypertension 50, 1049–1056 (2007).

    CAS  PubMed  Google Scholar 

  104. Miller, M. R. & Megson, I. L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151, 305–321 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stasch, J. P., Dembowsky, K., Perzborn, E., Stahl, E. & Schramm, M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543: in vivo studies. Br. J. Pharmacol. 135, 344–355 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zanfolin, M. et al. Protective effects of BAY 41–2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J. Cardiovasc. Pharmacol. 47, 391–395 (2006).

    CAS  PubMed  Google Scholar 

  107. Straub, A. et al. NO-independent stimulators of soluble guanylate cyclase. Bioorg. Med. Chem. Lett. 11, 781–784 (2001).

    CAS  PubMed  Google Scholar 

  108. Lapp, H. et al. Cinaciguat (BAY 58–2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation 119, 2781–2788 (2009).

    CAS  PubMed  Google Scholar 

  109. Aggarwal, P., Patial, R. K., Negi, P. C. & Marwaha, R. Oral tadalafil in pulmonary artery hypertension: a prospective study. Indian Heart J. 59, 329–335 (2007).

    PubMed  Google Scholar 

  110. Galiè, N. et al. for the Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. Tadalafil therapy for pulmonary arterial hypertension. Circulation 119, 2894–2903 (2009).

    PubMed  Google Scholar 

  111. Prisant, L. M. Phosphodiesterase-5 inhibitors and their hemodynamic effects. Curr. Hypertens. Rep. 8, 345–351 (2006).

    CAS  PubMed  Google Scholar 

  112. Sawamura, F., Kato, M., Fujita, K., Nakazawa, T. & Beardsworth, A. Tadalafil, a long-acting inhibitor of PDE5, improves pulmonary hemodynamics and survival rate of monocrotaline-induced pulmonary artery hypertension in rats. J. Pharmacol. Sci. 111, 235–243 (2009).

    CAS  PubMed  Google Scholar 

  113. Hsu, S. et al. Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovasc. Res. 81, 301–309 (2009).

    CAS  PubMed  Google Scholar 

  114. Bednar, M. M. The role of sildenafil in the treatment of stroke. Curr. Opin. Investig. Drugs 9, 754–759 (2008).

    CAS  PubMed  Google Scholar 

  115. Rodriguez-Iturbe, B. et al. Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int. 68, 2131–2142 (2005).

    CAS  PubMed  Google Scholar 

  116. Sastry, B. K. Pharmacologic treatment for pulmonary arterial hypertension. Curr. Opin. Cardiol. 21, 561–568 (2006).

    CAS  PubMed  Google Scholar 

  117. Nakov, R., Pfarr, E. & Eberle, S. for the HEAT Investigators. Darusentan: an effective endothelin A receptor antagonist for treatment of hypertension. Am. J. Hypertens. 15, 583–589 (2002).

    CAS  PubMed  Google Scholar 

  118. Black, H. R. et al. Efficacy and safety of darusentan in patients with resistant hypertension: results from a randomized, double-blind, placebo-controlled dose-ranging study. J. Clin. Hypertens. (Greenwich) 9, 760–769 (2007).

    CAS  Google Scholar 

  119. Weber, M. A. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374, 1423–1431 (2009).

    CAS  PubMed  Google Scholar 

  120. Luescher, T. F. et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation 106, 2666–2672 (2002).

    CAS  Google Scholar 

  121. Anand, I. et al. Long-term effects of darusentan on left-ventricular remodeling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364, 347–354 (2004).

    CAS  PubMed  Google Scholar 

  122. Marino, J. P. Jr. Soluble epoxide hydrolase, a target with multiple opportunities for cardiovascular drug discovery. Curr. Top. Med. Chem. 9, 452–463 (2009).

    CAS  PubMed  Google Scholar 

  123. Tengattini, S. et al. Cardiovascular diseases: protective effects of melatonin. J. Pineal Res. 44, 16–25 (2008).

    CAS  PubMed  Google Scholar 

  124. Paulis, L. & Simko, F. Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind. Physiol. Res. 56, 671–684 (2007).

    CAS  PubMed  Google Scholar 

  125. Mallareddy, M., Hanes, V. & White, W. B. Drospirenone, a new progestogen, for postmenopausal women with hypertension. Drugs Aging 24, 453–466 (2007).

    CAS  PubMed  Google Scholar 

  126. The Pharmaceutical Research and Manufacturers of America (PhRMA). New Medicines Database [online], (2010).

Download references

Acknowledgements

L. Paulis was supported by the Marie Curie Intra-European Fellowship (2009–237834) within the 7th European Community Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Unger.

Ethics declarations

Competing interests

T. Unger has received research support from Vicore Pharma. L. Paulis declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulis, L., Unger, T. Novel therapeutic targets for hypertension. Nat Rev Cardiol 7, 431–441 (2010). https://doi.org/10.1038/nrcardio.2010.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing