Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Myocardial edema—a new clinical entity?

Abstract

Edema is a generic component of the tissue response to acute injury and, therefore, an important diagnostic target for assessing the acuity of tissue damage in vivo. In the past, edema could not be used as a diagnostic target, because even histological techniques failed to provide reliable qualitative or even quantitative data on its presence, extent, and regional distribution. Cardiac MRI is about to change that. Using water-sensitive MRI, visualization of myocardial edema in vivo is possible within a few breath holds, without using radiation or contrast agents. Edema imaging provides useful incremental diagnostic and prognostic information in a variety of clinical settings associated with suspected acute myocardial injury. In combination with scar imaging, MRI differentiates reversible from irreversible injury and can quantify myocardial salvage after coronary revascularization. With this unique contribution, MRI of edema should be considered an essential diagnostic tool and, as part of a multitarget MRI scan, illustrates the exceptional role of comprehensive cardiac MRI in diagnosing and staging myocardial diseases safely and efficiently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified schematic view of edema evolution in ischemic injury to the myocardium.
Figure 2: Change in T2 relaxation after experimental coronary occlusion.
Figure 3: Myocardial edema in a patient 2 days after acute, reperfused myocardial infarction (mid-ventricular, short-axis views).
Figure 4: Regional myocardial edema in a patient with active myocarditis.
Figure 5: Diffuse myocardial edema in a patient with active myocarditis.
Figure 6: Myocardial edema of myocardial salvage after acute, reperfused myocardial infarction (midventricular short-axis views).

Similar content being viewed by others

References

  1. Henry, M. The state of water in living systems: from the liquid to the jellyfish. Cell. Mol. Biol. (Noisy-le-grand) 51, 677–702 (2005).

    CAS  Google Scholar 

  2. Landis, E. M. Micro-injection studies of capillary permeability: III. The effect of lack of oxygen on the permeability of the capillary wall to fluid and to the plasma proteins. Am. J. Physiol. 83, 528–542 (1927).

    Article  Google Scholar 

  3. Kuntz, I. D., Brassfield, T. S., Law, G. D. & Purcell, G. V. Hydration of macromolecules. Science 163, 1329–1331 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Kloner, R. A. et al. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 62, 945–952 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Majno, G. & Joris, I. Cells, Tissues, and Disease. Principles of General Pathology (Oxford University Press, New York, 2004).

    Google Scholar 

  6. Garcia-Dorado, D. & Oliveras, J. Myocardial edema: a preventable cause of reperfusion injury? Cardiovasc. Res. 27, 1555–1563 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. DiBona, D. R. & Powell, W. J. Jr. Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circ. Res. 47, 653–665 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Laine, G. A. & Allen, S. J. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ. Res. 68, 1713–1721 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Desai, K. V. et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am. J. Physiol. Heart Circ. Physiol. 294, H2428–H2434 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Friedrich, M. G. Tissue characterization of acute myocardial infarction and myocarditis by cardiac magnetic resonance. JACC Cardiovasc. Imaging 1, 652–662 (2008).

    Article  PubMed  Google Scholar 

  11. Budinger, T. F. & Lauterbur, P. C. Nuclear magnetic resonance technology for medical studies. Science 226, 288–298 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, E. S., Kaplan, J. I., Thatcher, F., Zimmerman, G. & Knoebel, S. B. Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J. Nucl. Med. 21, 449–453 (1980).

    CAS  PubMed  Google Scholar 

  13. Higgins, C. B. et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am. J. Cardiol. 52, 184–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Whalen, D. A. Jr, Hamilton, D. G., Ganote, C. E. & Jennings, R. B. Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am. J. Pathol. 74, 381–397 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsu, E. W., Aiken, N. R. & Blackband, S. J. Nuclear magnetic resonance microscopy of single neurons under hypotonic perturbation. Am. J. Physiol. 271, C1895–C1900 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hazlewood, C. F., Chang, D. C., Nichols, B. L. & Woessner, D. E. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys. J. 14, 583–606 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knight, R. A. et al. Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Rehwald, W. G., Fieno, D. S., Chen, E. L., Kim, R. J. & Judd, R. M. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105, 224–229 (2002).

    Article  PubMed  Google Scholar 

  19. Abdel-Aty, H. et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109, 2411–2416 (2004).

    Article  PubMed  Google Scholar 

  20. O'Regan, D. P. et al. Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 2 97, H340–H346 (2009).

    Article  Google Scholar 

  21. Eitel, I. et al. Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur. Heart J. 29, 2651–2659 (2008).

    Article  PubMed  Google Scholar 

  22. Tscholakoff, D., Higgins, C. B., McNamara, M. T. & Derugin, N. Early-phase myocardial infarction: evaluation by MR imaging. Radiology 159, 667–672 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. McNamara, M. T. et al. Detection and characterization of acute myocardial infarction in man with use of gated magnetic resonance. Circulation 71, 717–724 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Simonetti, O. P., Finn, J. P., White, R. D., Laub, G. & Henry, D. A. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199, 49–57 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Stork, A. et al. Comparison of an edema-sensitive HASTE-TIRM sequence with delayed contrast enhancement in acute myocardial infarcts [German]. Rofo 175, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Cury, R. C. et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 1 18, 837–844 (2008).

    Article  Google Scholar 

  27. Marie, P. Y. et al. Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J. Am. Coll. Cardiol. 37, 825–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Abdel-Aty, H. et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J. Am. Coll. Cardiol. 45, 1815–1822 (2005).

    Article  PubMed  Google Scholar 

  29. Abdel-Aty, H., Cocker, M. & Friedrich, M. G. Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from T2-weighted cardiovascular magnetic resonance. Int. J. Cardiol. 13 2, 291–293 (2009).

    Article  Google Scholar 

  30. Abdel-Aty, H., Cocker, M., Meek, C., Tyberg, J. V. & Friedrich, M. G. Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J. Am. Coll. Cardiol. 53, 1194–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Aletras, A. H. et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 113, 1865–1870 (2006).

    Article  PubMed  Google Scholar 

  32. Friedrich, M. G. et al. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51, 1581–1587 (2008).

    Article  PubMed  Google Scholar 

  33. Eitel, I. et al. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J. Am. Coll. Cardiol. (in press).

  34. Giri, S. et al. T2 quantification for improved detection of myocardial edema. J. Cardiovasc. Magn. Reson. 11, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Green, J. D., Clarke, J. R., Flewitt, J. A. & Friedrich, M. G. Single-shot steady-state free precession can detect myocardial edema in patients: a feasibility study. J. Magn. Reson. Imaging 30, 690–695 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I want to cordially thank John V. Tyberg, James Hare, and Jordin D. Green for their helpful review of the manuscript, Marc Henry for his valuable thoughts, and Ingo Eitel for providing the images for Figure 6.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, M. Myocardial edema—a new clinical entity?. Nat Rev Cardiol 7, 292–296 (2010). https://doi.org/10.1038/nrcardio.2010.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing