Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MRI of carotid atherosclerosis: clinical implications and future directions

Abstract

Atherosclerosis is now widely recognized as a multifactorial disease with outcomes that arise from complex factors such as plaque components, blood flow, and inflammation. Despite recent advances in understanding of plaque biology, diagnosis, and treatment, atherosclerosis remains a leading cause of morbidity and mortality. Further research into the development and validation of reliable indicators of the high-risk individual is greatly needed. Carotid MRI is a histologically validated, noninvasive imaging method that can track disease progression and regression, and quantitatively evaluate a spectrum of parameters associated with in vivo plaque morphology and composition. Intraplaque hemorrhage and the lipid-rich necrotic core are the best indicators of lesion severity currently visualized by carotid MRI. However, MRI methods capable of imaging other important aspects of carotid atherosclerotic disease in vivo—including inflammation, neovascularization, and mechanical forces—are emerging and may aid in advancing our understanding of the pathophysiology of this multifactorial disease.

Key Points

  • Carotid atherosclerosis is a multifactorial disease attributable to plaque composition, inflammation, neovasculature, and mechanical stress

  • Carotid MRI enables the in vivo monitoring of atherosclerotic disease

  • Carotid intraplaque hemorrhage has been associated with accelerated plaque growth, luminal narrowing, and development of symptomatic events

  • The lipid-rich necrotic core in the carotid artery represents the strongest in vivo predictor of future surface disruption

  • Emerging carotid MRI techniques are permitting the in vivo assessment of inflammation, neovasculature, and mechanical stress

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo evidence of the effects of IPH.
Figure 2: Development of a surface disruption in the right carotid artery.
Figure 3: Change in the LRNC in response to statin therapy.

Similar content being viewed by others

References

  1. American Heart Association. Heart Disease & Stroke Statistics—2009 Update (American Heart Association, Dallas, TX, 2009).

  2. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med. 325, 445–453 (1991).

  3. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists' Collaborative Group. Lancet 337, 1235–1243 (1991).

  4. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 273, 1421–1428 (1995).

  5. Rothwell, P. M., Gutnikov, S. A. & Warlow, C. P. Reanalysis of the final results of the European Carotid Surgery Trial. Stroke 34, 514–523 (2003).

    CAS  PubMed  Google Scholar 

  6. Gorelick, P. B. Carotid endarterectomy: where do we draw the line? Stroke 30, 1745–1750 (1999).

    CAS  PubMed  Google Scholar 

  7. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    CAS  PubMed  Google Scholar 

  8. Pignoli, P., Tremoli, E., Poli, A., Oreste, P. & Paoletti, R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74, 1399–1406 (1986).

    CAS  PubMed  Google Scholar 

  9. O'Leary, D. H. et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 340, 14–22 (1999).

    CAS  PubMed  Google Scholar 

  10. Landry, A., Spence, J. D. & Fenster, A. Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 35, 864–869 (2004).

    PubMed  Google Scholar 

  11. Saba, L., Sanfilippo, R., Montisci, R. & Mallarini, G. Carotid artery wall thickness: comparison between sonography and multi-detector row CT angiography. Neuroradiology doi:10.1007/s00234-009-0589-5.

    PubMed  Google Scholar 

  12. Toussaint, J. F., Southern, J. F., Fuster, V. & Kantor, H. L. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15, 1533–1542 (1995).

    CAS  PubMed  Google Scholar 

  13. Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., Fuster, V. & Kantor, H. L. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94, 932–938 (1996).

    CAS  PubMed  Google Scholar 

  14. Saam, T. et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler. Thromb. Vasc. Biol. 25, 234–239 (2005).

    CAS  PubMed  Google Scholar 

  15. Cai, J. et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112, 3437–3444 (2005).

    PubMed  Google Scholar 

  16. Yuan, C. et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104, 2051–2056 (2001).

    CAS  PubMed  Google Scholar 

  17. Trivedi, R. A. et al. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur. J. Vasc. Endovasc. Surg. 28, 207–213 (2004).

    CAS  PubMed  Google Scholar 

  18. Chu, B. et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35, 1079–1084 (2004).

    PubMed  Google Scholar 

  19. Kampschulte, A. et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 110, 3239–3244 (2004).

    CAS  PubMed  Google Scholar 

  20. Moody, A. R. et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 107, 3047–3052 (2003).

    PubMed  Google Scholar 

  21. Ota, H. et al. Carotid intraplaque hemorrhage imaging at 3.0-tesla MRI: a comparison of three T1-weighted sequences. Radiology (in press).

  22. Hatsukami, T. S., Ross, R., Polissar, N. L. & Yuan, C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102, 959–964 (2000).

    CAS  PubMed  Google Scholar 

  23. Mitsumori, L. M. et al. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J. Magn. Reson. Imaging 17, 410–420 (2003).

    PubMed  Google Scholar 

  24. Yu, W. et al. The added value of longitudinal black-blood cardiovascular magnetic resonance angiography in the cross sectional identification of carotid atherosclerotic ulceration. J. Cardiovasc. Magn. Reson. 11, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Saam, T. et al. Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners. J. Magn. Reson. Imaging 26, 344–352 (2007).

    PubMed  Google Scholar 

  26. Takaya, N. et al. Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. J. Magn. Reson. Imaging 24, 203–210 (2006).

    PubMed  Google Scholar 

  27. Saam, T. et al. Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J. Cardiovasc. Magn. Reson. 7, 799–808 (2005).

    PubMed  Google Scholar 

  28. Underhill, H. R. et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am. Heart J. 155, 584.e1–8 (2008).

    Google Scholar 

  29. Underhill, H. R. et al. Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. Radiology 248, 550–560 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Kang, X., Polissar, N. L., Han, C., Lin, E. & Yuan, C. Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magn. Reson. Med. 44, 968–972 (2000).

    CAS  PubMed  Google Scholar 

  31. Chu, B. et al. Cardiac magnetic resonance features of the disruption-prone and the disrupted carotid plaque. J. Am. Coll. Cardiol. Img. 2, 883–896 (2009).

    Google Scholar 

  32. Yuan, C. et al. MRI of atherosclerosis in clinical trials. NMR Biomed. 19, 636–654 (2006).

    PubMed  Google Scholar 

  33. Saam, T. et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244, 64–77 (2007).

    PubMed  Google Scholar 

  34. Fayad, Z. A. & Fuster, V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ. Res. 89, 305–316 (2001).

    CAS  PubMed  Google Scholar 

  35. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    CAS  PubMed  Google Scholar 

  36. Takaya, N. et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 111, 2768–2775 (2005).

    PubMed  Google Scholar 

  37. Underhill, H. R. et al. Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am. J. Neuroradiol. doi:10.3174/ajnr.A1842.

    PubMed  Google Scholar 

  38. Underhill, H. R. et al. Arterial remodeling in subclinical carotid artery disease. J. Am. Coll. Cardiol. Img 2, 1381–1389 (2009).

    Google Scholar 

  39. Takaya, N. et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke 37, 818–823 (2006).

    PubMed  Google Scholar 

  40. Singh, N. et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology 252, 502–508 (2009).

    PubMed  Google Scholar 

  41. Altaf, N. et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. J. Vasc. Surg. 47, 337–342 (2008).

    PubMed  Google Scholar 

  42. Imparato, A. M., Riles, T. S. & Gorstein, F. The carotid bifurcation plaque: pathologic findings associated with cerebral ischemia. Stroke 10, 238–245 (1979).

    CAS  PubMed  Google Scholar 

  43. Lusby, R. J., Ferrell, L. D., Ehrenfeld, W. K., Stoney, R. J. & Wylie, E. J. Carotid plaque hemorrhage. Its role in production of cerebral ischemia. Arch. Surg. 117, 1479–1488 (1982).

    CAS  PubMed  Google Scholar 

  44. Imparato, A. M., Riles, T. S., Mintzer, R. & Baumann, F. G. The importance of hemorrhage in the relationship between gross morphologic characteristics and cerebral symptoms in 376 carotid artery plaques. Ann. Surg. 197, 195–203 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lennihan, L. et al. Lack of association between carotid plaque hematoma and ischemic cerebral symptoms. Stroke 18, 879–881 (1987).

    CAS  PubMed  Google Scholar 

  46. Gao, P., Chen, Z. Q., Bao, Y. H., Jiao, L. Q. & Ling, F. Correlation between carotid intraplaque hemorrhage and clinical symptoms: systematic review of observational studies. Stroke 38, 2382–2390 (2007).

    PubMed  Google Scholar 

  47. Golledge, J., Greenhalgh, R. M. & Davies, A. H. The symptomatic carotid plaque. Stroke 31, 774–781 (2000).

    CAS  PubMed  Google Scholar 

  48. Moore, W. S. et al. Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from the Ad Hoc Committee, American Heart Association. Circulation 91, 566–579 (1995).

    CAS  PubMed  Google Scholar 

  49. Zhu, D. C., Ferguson, M. S. & DeMarco, J. K. An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence for carotid plaque hemorrhage imaging at 3.0 T. Magn. Reson. Imaging 26, 1360–1366 (2008).

    PubMed  Google Scholar 

  50. Bornstein, N. M., Krajewski, A., Lewis, A. J. & Norris, J. W. Clinical significance of carotid plaque hemorrhage. Arch. Neurol. 47, 958–959 (1990).

    CAS  PubMed  Google Scholar 

  51. von Maravic, C., Kessler, C., von Maravic, M., Hohlbach, G. & Kompf, D. Clinical relevance of intraplaque hemorrhage in the internal carotid artery. Eur. J. Surg. 157, 185–188 (1991).

    CAS  PubMed  Google Scholar 

  52. Saam, T. et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J. Am. Coll. Cardiol. 51, 1014–1021 (2008).

    PubMed  Google Scholar 

  53. Dong, L. et al. Geometric and compositional appearance of atheroma in an angiographically normal carotid artery in patients with atherosclerosis. AJNR Am. J. Neuroradiol. doi:10.3174/ajnr.A1793.

    PubMed  Google Scholar 

  54. Corti, R. et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106, 2884–2887 (2002).

    CAS  PubMed  Google Scholar 

  55. Zhao, X. Q. et al. Magnetic resonance imaging of the plaque lipid depletion during lipid therapy: a prospective assessment of efficacy and time-course. A late breaking clinical trial report presented at ACC 58th Annual Scientific Session, 28–31 March 2009, Orlando, USA.

  56. AbuRahma, A. F., Boland, J. P., Robinson, P. & Decanio, R. Antiplatelet therapy and carotid plaque hemorrhage and its clinical implications. J. Cardiovasc. Surg. 31, 66–70 (1990).

    CAS  Google Scholar 

  57. Arapoglou, B., Kondi-Pafiti, A., Katsenis, K. & Dimakakos, P. The clinical significance of carotid plaque haemorrhage. Int. Angiol. 13, 323–326 (1994).

    CAS  PubMed  Google Scholar 

  58. Ammar, A. D. et al. Intraplaque hemorrhage: its significance in cerebrovascular disease. Am. J. Surg. 148, 840–843 (1984).

    CAS  PubMed  Google Scholar 

  59. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    CAS  PubMed  Google Scholar 

  60. Wasserman, B. A., Casal, S. G., Astor, B. C., Aletras, A. H. & Arai, A. E. Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J. Magn. Reson. Imaging 21, 91–95 (2005).

    PubMed  Google Scholar 

  61. Libby, P. & Theroux, P. Pathophysiology of coronary artery disease. Circulation 111, 3481–3488 (2005).

    PubMed  Google Scholar 

  62. Sitzer, M. et al. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 26, 1231–1233 (1995).

    CAS  PubMed  Google Scholar 

  63. Park, A. E., McCarthy, W. J., Pearce, W. H., Matsumura, J. S. & Yao, J. S. Carotid plaque morphology correlates with presenting symptomatology. J. Vasc. Surg. 27, 872–878; discussion 878–879 (1998).

    CAS  PubMed  Google Scholar 

  64. Fisher, M. et al. Carotid plaque pathology: thrombosis, ulceration, and stroke pathogenesis. Stroke 36, 253–257 (2005).

    PubMed  Google Scholar 

  65. Yuan, C. et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105, 181–185 (2002).

    PubMed  Google Scholar 

  66. Saam, T. et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology 240, 464–472 (2006).

    PubMed  Google Scholar 

  67. Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).

    CAS  PubMed  Google Scholar 

  68. Redgrave, J. N., Gallagher, P., Lovett, J. K. & Rothwell, P. M. Critical cap thickness and rupture in symptomatic carotid plaques: the Oxford plaque study. Stroke 39, 1722–1729 (2008).

    PubMed  Google Scholar 

  69. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N. Engl. J. Med. 339, 1349–1357 (1998).

  70. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  71. Amarenco, P. et al. High-dose atorvastatin after stroke or transient ischemic attack. N. Engl. J. Med. 355, 549–559 (2006).

    CAS  PubMed  Google Scholar 

  72. Corti, R. et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 106–112 (2005).

    CAS  PubMed  Google Scholar 

  73. Grobner, T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21, 1104–1108 (2006).

    CAS  PubMed  Google Scholar 

  74. Rydahl, C., Thomsen, H. S. & Marckmann, P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest. Radiol. 43, 141–144 (2008).

    CAS  PubMed  Google Scholar 

  75. Wiginton, C. D. et al. Gadolinium-based contrast exposure, nephrogenic systemic fibrosis, and gadolinium detection in tissue. AJR Am. J. Roentgenol. 190, 1060–1068 (2008).

    PubMed  Google Scholar 

  76. Varani, J. et al. Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest. Radiol. 44, 74–81 (2009).

    CAS  PubMed  Google Scholar 

  77. Sadowski, E. A. et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243, 148–157 (2007).

    PubMed  Google Scholar 

  78. Paterson, J. C. Capillary rupture with intimal hemorrhage as a causative factor in coronary thrombosis. Arch. Path. 25, 474–487 (1938).

    Google Scholar 

  79. Levy, A. P. & Moreno, P. R. Intraplaque hemorrhage. Curr. Mol. Med. 6, 479–488 (2006).

    CAS  PubMed  Google Scholar 

  80. Cybulsky, M. I. & Gimbrone, M. A., Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991).

    CAS  PubMed  Google Scholar 

  81. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajavashisth, T. et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 101, 2702–2710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Falk, E. Why do plaques rupture? Circulation 86, III30–III42 (1992).

    CAS  PubMed  Google Scholar 

  84. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    CAS  PubMed  Google Scholar 

  85. Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the unstable plaque. Prog. Cardiovasc. Dis. 44, 349–356 (2002).

    PubMed  Google Scholar 

  86. Trivedi, R. A. et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35, 1631–1635 (2004).

    PubMed  Google Scholar 

  87. Trivedi, R. A. et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler. Thromb. Vasc. Biol. 26, 1601–1606 (2006).

    CAS  PubMed  Google Scholar 

  88. Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    CAS  PubMed  Google Scholar 

  89. Tang, T. Y. et al. Correlation of carotid atheromatous plaque inflammation using USPIO-enhanced MR imaging with degree of luminal stenosis. Stroke 39, 2144–2147 (2008).

    PubMed  Google Scholar 

  90. Howarth, S. P. et al. Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur. J. Radiol. 70, 555–560 (2009).

    CAS  PubMed  Google Scholar 

  91. Tang, T. Y. et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol. 53, 2039–2050 (2009).

    CAS  PubMed  Google Scholar 

  92. Briley-Saebo, K. C. et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117, 3206–3215 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Amirbekian, V. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc. Natl Acad. Sci. USA 104, 961–966 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, W. et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol. Imaging 3, 233–242 (2008).

    CAS  PubMed  Google Scholar 

  95. Cormode, D. P. et al. An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection. Small 4, 1437–1444 (2008).

    CAS  PubMed  Google Scholar 

  96. Cormode, D. P. et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 8, 3715–3723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Padhani, A. R. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging 16, 407–422 (2002).

    PubMed  Google Scholar 

  98. Kerwin, W. S. et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241, 459–468 (2006).

    PubMed  Google Scholar 

  99. Calcagno, C. et al. Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler. Thromb. Vasc. Biol. 28, 1311–1317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao, X. Q. et al. Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of Carotid Plaque Composition Study. Am. Heart J. 154, 239–246 (2007).

    CAS  PubMed  Google Scholar 

  101. Kerwin, W. S., Oikawa, M., Yuan, C., Jarvik, G. P. & Hatsukami, T. S. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn. Reson. Med. 59, 507–514 (2008).

    CAS  PubMed  Google Scholar 

  102. Kumamoto, M., Nakashima, Y. & Sueishi, K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum. Pathol. 26, 450–456 (1995).

    CAS  PubMed  Google Scholar 

  103. Steinman, D. A. et al. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47, 149–159 (2002).

    PubMed  Google Scholar 

  104. Li, Z. Y. et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg. 45, 768–775 (2007).

    PubMed  Google Scholar 

  105. Tang, D. et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 32, 947–960 (2004).

    PubMed  Google Scholar 

  106. Tang, D. et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses. An in vivo MRI-based 3D fluid-structure interaction study. Stroke 40, 3258–3263 (2009).

    PubMed  PubMed Central  Google Scholar 

  107. Prosi, M., Perktold, K., Ding, Z. & Friedman, M. H. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37, 1767–1775 (2004).

    PubMed  Google Scholar 

  108. Vermeer, S., Koudstaal, P., Oudkerk, M., Hofman, A. & Breteler, M. Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33, 21–25 (2002).

    PubMed  Google Scholar 

  109. Vermeer, S. et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34, 1126–1129 (2003).

    PubMed  Google Scholar 

  110. Bernick, C. et al. Silent MRI infarcts and the risk of future stroke: the Cardiovascular Health Study. Neurology 57, 1222–1229 (2001).

    CAS  PubMed  Google Scholar 

  111. Longstreth, W. T., Jr et al. Incidence, manifestations, and predictors of brain infarcts defined by serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 33, 2376–2382 (2002).

    PubMed  Google Scholar 

  112. Brott, T. et al. Baseline silent cerebral infarction in the Asymptomatic Carotid Atherosclerosis Study. Stroke 25, 1122–1129 (1994).

    CAS  PubMed  Google Scholar 

  113. Norris, J. & Zhu, C. Silent stroke and carotid stenosis. Stroke 23, 483–485 (1992).

    CAS  PubMed  Google Scholar 

  114. Mani, V. et al. Cardiovascular magnetic resonance parameters of atherosclerotic plaque burden improve discrimination of prior major adverse cardiovascular events. J. Cardiovasc. Magn. Reson. 11, 10 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter R. Underhill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underhill, H., Hatsukami, T., Fayad, Z. et al. MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol 7, 165–173 (2010). https://doi.org/10.1038/nrcardio.2009.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing