Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging ventricular assist devices for long-term cardiac support

Abstract

Despite major advances in the treatment of heart failure over the past 2 decades improving the natural history of this condition, heart failure continues to be a major source of morbidity and mortality. Although availability of donor hearts for transplantation has declined over the past several years, innovations in ventricular assist device (VAD) technology has provided an alternative therapeutic option for patients with advanced heart failure. Initiated as a mechanical option to 'bridge' critically ill patients awaiting transplantation, VADs are being increasingly deployed as 'destination' devices to provide long-term support. With technical advances resulting in improved mechanical reliability, reduced postoperative morbidity and greater likelihood of patient acceptance, there is interest in expanding the applicability for destination VAD treatment beyond the current indication of severely ill patients who are not candidates for transplant. This Review examines the newer, third-generation VADs for mechanical cardiac support. These devices are at various stages of development and clinical investigation. One or more of these newer devices is likely to emerge as an important development in the treatment of patients with advanced heart failure.

Key Points

  • Mechanical cardiac support is a rapidly evolving field

  • Several new technologies are at various stages of development

  • Initial results of newer generation ventricular assist devices show encouraging results towards improved device durability and clinical outcomes

  • With these improved technologies, the potential exists for expanding the indication of ventricular assist devices, a result that will require additional clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation showing placement of inflow and outflow cannulae for a | LVADs and b | RVADs.
Figure 2: Scheme for categorizing LVADs that are currently available or are in clinical development.

Similar content being viewed by others

References

  1. Rosamond, W. et al. Heart disease and stroke statistics: 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008).

    PubMed  Google Scholar 

  2. Allen, L. A. et al. High mortality without ESCAPE: the registry of heart failure patients receiving pulmonary artery catheters without randomization. J. Card. Fail. 14, 661–669 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mancini, D. & Burkhoff, D. Mechanical device-based methods of managing and treating heart failure Circulation 112, 438–448 (2005).

    Article  PubMed  Google Scholar 

  4. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. McCarthy, P. M. et al. Hemodynamic and physiologic changes during support with an implantable left ventricular assist device. J. Thorac. Cardiovasc. Surg. 109, 409–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Klotz, S. et al. Left ventricular assist device support normalizes left and right ventricular beta-adrenergic pathway properties. J. Am. Coll. Cardiol. 45, 668–676 (2005).

    Article  PubMed  Google Scholar 

  7. Kirklin, J. K. et al. INTERMACS database for durable devices for circulatory support: first annual report. J. Heart Lung Transplant. 27, 1065–1072 (2008).

    Article  PubMed  Google Scholar 

  8. Wilson, S. R., Mudge, G. H. Jr, Stewart, G. C. & Givertz, M. M. Evaluation for a ventricular assist device: selecting the appropriate candidate. Circulation 119, 2225–2232 (2009).

    Article  PubMed  Google Scholar 

  9. Frazier, O. H. et al. Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann. Surg. 222, 327–338 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Patlolla, V., Patten, R. D., DeNofrio, D., Konstam, M. A. & Krishnamani, R. The effect of ventricular assist devices on post-transplant mortality: analysis of United Network for Organ Sharing Network Registry. J. Am. Coll. Cardiol. 53, 264–271 (2009).

    Article  PubMed  Google Scholar 

  11. Rose, E. A. et al. Long-term use of a left ventricular assist device for end stage heart failure. N. Engl. J. Med. 20, 1435–1443 (2001).

    Article  Google Scholar 

  12. Park, S. J. et al. Left ventricular assist devices as destination therapy: a new look at survival. J. Thorac. Cardiovasc. Surg. 129, 9–17 (2005).

    Article  PubMed  Google Scholar 

  13. Long, J. W. et al. Improving outcomes with long-term “destination” therapy using left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 135, 1353–1361 (2008).

    Article  PubMed  Google Scholar 

  14. Leitz, K. et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH Era. Implications for patient selection. Circulation 116, 497–505 (2007).

    Article  Google Scholar 

  15. National Heart Lung and Blood Institute, National Institutes of Health, Division of Cardiovascular Diseases Strategic Plan Goal 2.4d [online], (2009).

  16. National Heart Lung and Blood Institute, National Institutes of Health, NHLBI Working Group Clinical Use of Ventricular Assist Devices [online], (2009).

  17. Hutchinson, J. et al. Cost-effectiveness of left ventricular-assist devices in end-stage heart failure. Expert Rev. Cardiovasc. Ther. 6, 175–185 (2008).

    Article  PubMed  Google Scholar 

  18. Moskowitz, A. J., Rose, E. A. & Gelijns, A. C. The cost of long-term LVAD implantation. Ann. Thorac. Surg. 71 (Suppl. 3), S195–S198 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sharples, L. D. et al. Cost-effectiveness of ventricular assist device use in the United Kingdom: results from the evaluation of ventricular assist device programme in the UK (EVAD-UK). J. Heart Lung Transplant. 25, 1336–1343 (2006).

    Article  PubMed  Google Scholar 

  20. Pagani, F. D. et al. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann. Thorac. Surg. 82, 1413–1419 (2006).

    Article  PubMed  Google Scholar 

  21. Taylor, D. O. et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report—2007. J. Heart Lung Transplant. 26, 769–781 (2008).

    Article  Google Scholar 

  22. Klovaite, J., Gustafsson, F., Mortensen, S., Sander, K. & Nielsen, L. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J. Am. Coll. Cardiol. 5 3, 2162–2167 (2009).

    Article  Google Scholar 

  23. Crow, S. et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 137, 208–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Grasso, M., Fenkel, J., Sorensen, E. & Feller, E. Gastrointestinal bleeding from arteriovenous malformations in recipients of left ventricular assist devices. J. Card. Fail. 13, S115 (2007).

    Article  Google Scholar 

  25. Miller, L. W. et al. Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357, 885–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pagani, F. D. et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J. Am. Coll. Cardiol. 54, 312–321 (2009).

    Article  PubMed  Google Scholar 

  27. Pagani, F. D. Continuous-flow rotary left ventricular assist devices with '3rd generation' design. Semin. Thorac. Cardiovasc. Surg. 20, 255–263 (2008).

    Article  PubMed  Google Scholar 

  28. Esmore, D. et al. Initial clinical experience with the ventrassist left ventricular assist device: the pilot trial. J. Heart Lung Transplant. 27, 479–485 (2008).

    Article  PubMed  Google Scholar 

  29. Esmore, D. et al. VentrAssistTM left ventricular assist device: clinical trial results and clinical development plan update. Eur. J. Cardiothorac. Surg. 32, 735–744 (2007).

    Article  PubMed  Google Scholar 

  30. Boyle, A. J. et al. The ventrassist US pivotal bridge to cardiac transplantation trial. Presented at the 58th annual meeting of the American College of Cardiology, March 30, 2009.

  31. Slaughter, M. S. et al. HeartWare miniature axial-flow ventricular assist device-design and initial feasibility test. Texas Heart Inst. J. 36, 12–16 (2009). Erratum in: Texas Heart Inst. J. 36, 186 (2009).

    Google Scholar 

  32. Tuzun, E. et al. In vivo evaluation of the Heart-Ware centrifugal ventricular assist device. Texas Heart Inst. J. 34, 406–411 (2007).

    Google Scholar 

  33. Nishinaka, T. et al. The DuraHeart VAD, a magnetically levitated centrifugal pump—The University of Vienna bridge to transplant experience. Circulation 70, 1421–1425 (2006).

    Article  Google Scholar 

  34. Morshuis, M. et al. European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system. Eur. J. Cardiothorac. Surg. 35, 1020–1027 (2009).

    Article  PubMed  Google Scholar 

  35. Pitsis, A. A. et al. First human implantation of a new rotary blood pump: design of the clinical feasibility study. Hellenic J. Cardiol. 47, 368–376 (2006).

    PubMed  Google Scholar 

  36. Schmid, C. et al. Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multicenter analysis. J. Heart Lung Transplant. 27, 253–260 (2008).

    Article  PubMed  Google Scholar 

  37. Schmid, C. et al. First clinical experience with the Incor left ventricular assist device. J. Heart Lung Transplant. 24, 1188–1194 (2005).

    Article  PubMed  Google Scholar 

  38. Hetzer, R. et al. First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur. J. Cardiothorac. Surg. 25, 964–970 (2004).

    Article  PubMed  Google Scholar 

  39. Meyns, B. et al. Proof of concept: hemodynamic response to long-term partial ventricular support with the synergy pocket micro-pump. J. Am. Coll. Cardiol. 54, 79–86 (2009).

    Article  PubMed  Google Scholar 

  40. Meyns, B. et al. First human use of partial left ventricular heart support with the Circulite synergy micro-pump as a bridge to cardiac transplantation. Eur. Heart J. 29, 2582 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin A. Konstam.

Ethics declarations

Competing interests

R. Krishnamami and D. DeNofrio have received grants or research support from HeartWare and Thoratec. M. A. Konstam has received research support from HeartWare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamani, R., DeNofrio, D. & Konstam, M. Emerging ventricular assist devices for long-term cardiac support. Nat Rev Cardiol 7, 71–76 (2010). https://doi.org/10.1038/nrcardio.2009.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing