Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced imaging in valvular heart disease

Key Points

  • Multimodality imaging has provided important insights in the pathophysiology of mitral regurgitation, aortic stenosis, and aortic regurgitation

  • Grading the severity of valve dysfunction is an important step in the management of patients with valvular heart disease and, at present, echocardiography, computed tomography, and cardiac magnetic resonance are important diagnostic tools

  • Strain imaging with echocardiography and tissue characterization with late gadolinium enhanced cardiac magnetic resonance have prognostic value in patients with valvular heart disease

  • Accumulating data show that the extent of fibrosis associated with severe VHD has important prognostic implications

Abstract

Although echocardiography remains the mainstay imaging technique for the evaluation of patients with valvular heart disease (VHD), innovations in noninvasive imaging in the past few years have provided new insights into the pathophysiology and quantification of VHD, early detection of left ventricular (LV) dysfunction, and advanced prognostic assessment. The severity grading of valve dysfunction has been refined with the use of Doppler echocardiography, cardiac magnetic resonance (CMR), and CT imaging. LV ejection fraction remains an important criterion when deciding whether patients should be referred for surgery. However, echocardiographic strain imaging can now detect impaired LV systolic function before LV ejection fraction reduces, thus provoking the debate on whether patients with severe VHD should be referred for surgery at an earlier stage (before symptom onset). Impaired LV strain correlates with the amount of myocardial fibrosis detected with CMR techniques. Furthermore, accumulating data show that the extent of fibrosis associated with severe VHD has important prognostic implications. The present Review focuses on using these novel imaging modalities to assess pathophysiology, early LV dysfunction, and prognosis of major VHDs, including aortic stenosis, mitral regurgitation, and aortic regurgitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D transoesophageal echocardiography for the characterization of primary mitral regurgitation.
Figure 2: Mitral leaflet remodelling in functional mitral regurgitation (MR).
Figure 3: 2D speckle tracking longitudinal strain analysis in functional mitral regurgitation (MR).
Figure 4: Fused positron emission tomography (PET) and computed tomography (CT) images of the aortic valve in patients with increasing degree of aortic stenosis (AS).
Figure 5: Assessment of pressure recovery phenomenon with 4D magnetic resonance imaging turbulent kinetic energy (TKE) mapping.
Figure 6: Speckle tracking echocardiography to assess left ventricular (LV) mechanics in severe aortic stenosis.
Figure 7: Patterns of late gadolinium-enhancement (LGE) cardiac magnetic resonance (CMR) in aortic stenosis.
Figure 8: 4D magnetic resonance imaging patterns of aortic blood flow in patients with bicuspid aortic valve.
Figure 9: 3D modelling of the aortic valve from computed tomography data.
Figure 10: Assessment of myocardial fibrosis with late gadolinium-enhanced (LGE) cardiac magnetic resonance (CMR).
Figure 11: Association between left ventricular (LV) myocardial fibrosis on histopathology or late gadolinium-enhanced (LGE) cardiac magnetic resonance (CMR) and LV systolic function improvement and prognosis after aortic valve replacement.

Similar content being viewed by others

References

  1. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, e521–e643 (2014).

    PubMed  Google Scholar 

  2. Dal-Bianco, J. P. et al. Myocardial infarction alters adaptation of the tethered mitral valve. J. Am. Coll. Cardiol. 67, 275–287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grande-Allen, K. Fibrotic versus myxomatous remodeling of mitral valves. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 3737–3740 (2004).

    CAS  Google Scholar 

  4. Stephens, E. H. et al. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 120 (11 Suppl.), S112–S119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandra, S. et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ. Cardiovasc. Imaging 4, 24–32 (2011).

    Article  PubMed  Google Scholar 

  6. Clavel, M. A. et al. Dynamic phenotypes of degenerative myxomatous mitral valve disease: quantitative 3-dimensional echocardiographic study. Circ. Cardiovasc. Imaging 8, e002989 (2015).

    Article  PubMed  Google Scholar 

  7. Debonnaire, P. et al. Leaflet remodelling in functional mitral valve regurgitation: characteristics, determinants, and relation to regurgitation severity. Eur. Heart J. Cardiovasc. Imaging 16, 290–299 (2015).

    Article  PubMed  Google Scholar 

  8. Beaudoin, J. et al. Assessment of mitral valve adaptation with gated cardiac computed tomography: validation with three-dimensional echocardiography and mechanistic insight to functional mitral regurgitation. Circ. Cardiovasc. Imaging 6, 784–789 (2013).

    Article  PubMed  Google Scholar 

  9. Saito, K. et al. Influence of chronic tethering of the mitral valve on mitral leaflet size and coaptation in functional mitral regurgitation. JACC Cardiovasc. Imaging 5, 337–345 (2012).

    Article  PubMed  Google Scholar 

  10. Kalra, K. et al. Temporal changes in interpapillary muscle dynamics as an active indicator of mitral valve and left ventricular interaction in ischemic mitral regurgitation. J. Am. Coll. Cardiol. 64, 1867–1879 (2014).

    Article  PubMed  Google Scholar 

  11. Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    Article  PubMed  Google Scholar 

  12. Iwakura, K. et al. Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am. J. Cardiol. 97, 1630–1637 (2006).

    Article  PubMed  Google Scholar 

  13. Yosefy, C. et al. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J. Am. Soc. Echocardiogr. 20, 389–396 (2007).

    Article  PubMed  Google Scholar 

  14. Kahlert, P. et al. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 912–921 (2008).

    Article  PubMed  Google Scholar 

  15. Matsumura, Y. et al. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J. Am. Soc. Echocardiogr. 21, 1251–1256 (2008).

    Article  PubMed  Google Scholar 

  16. Matsumura, Y. et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am. Heart J. 155, 231–238 (2008).

    Article  PubMed  Google Scholar 

  17. Yosefy, C. et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am. J. Cardiol. 104, 978–983 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marsan, N. A. et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc. Imaging 2, 1245–1252 (2009).

    Article  PubMed  Google Scholar 

  19. Skaug, T. R. et al. Quantification of mitral regurgitation using high pulse repetition frequency three-dimensional color Doppler. J. Am. Soc. Echocardiogr. 23, 1–8 (2010).

    Article  PubMed  Google Scholar 

  20. Shanks, M. et al. Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ. Cardiovasc. Imaging 3, 694–700 (2010).

    Article  PubMed  Google Scholar 

  21. Zeng, X. et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ. Cardiovasc. Imaging 4, 506–513 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hyodo, E. et al. Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc. Imaging 5, 669–676 (2012).

    Article  PubMed  Google Scholar 

  23. Thavendiranathan, P. et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ. Cardiovasc. Imaging 6, 125–133 (2013).

    Article  PubMed  Google Scholar 

  24. Choi, J. et al. Differential effect of 3-dimensional color Doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ. Cardiovasc. Imaging 7, 535–544 (2014).

    Article  PubMed  Google Scholar 

  25. Cawley, P. J. et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ. Cardiovasc. Imaging 6, 48–57 (2013).

    Article  PubMed  Google Scholar 

  26. Vahanian, A. et al. Guidelines on the management of valvular heart disease. Eur. Heart J. 33, 2451–2496 (2012).

    Article  PubMed  Google Scholar 

  27. Agricola, E. et al. Usefulness of latent left ventricular dysfunction assessed by Bowditch Treppe to predict stress-induced pulmonary hypertension in minimally symptomatic severe mitral regurgitation secondary to mitral valve prolapse. Am. J. Cardiol. 95, 414–417 (2005).

    Article  PubMed  Google Scholar 

  28. Witkowski, T. G. et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur. Heart J. Cardiovasc. Imaging 14, 69–76 (2013).

    Article  PubMed  Google Scholar 

  29. Kamperidis, V., Marsan, N. A., Delgado, V. & Bax, J. J. Left ventricular systolic function assessment in secondary mitral regurgitation: left ventricular ejection fraction versus speckle tracking global longitudinal strain. Eur. Heart J. 37, 811–816 (2016).

    Article  PubMed  Google Scholar 

  30. Edwards, N. C. et al. Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ. Cardiovasc. Imaging 7, 946–953 (2014).

    Article  PubMed  Google Scholar 

  31. Tribouilloy, C. et al. Long-term mortality associated with left ventricular dysfunction in mitral regurgitation due to flail leaflets: a multicenter analysis. Circ. Cardiovasc. Imaging 7, 363–370 (2014).

    Article  PubMed  Google Scholar 

  32. Kusunose, K., Popovic, Z. B., Motoki, H. & Marwick, T. H. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ. Cardiovasc. Imaging 6, 167–176 (2013).

    Article  PubMed  Google Scholar 

  33. Magne, J. et al. Left ventricular contractile reserve in asymptomatic primary mitral regurgitation. Eur. Heart J. 35, 1608–1616 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Magne, J. et al. Clinical and prognostic impact of a new left ventricular ejection index in primary mitral regurgitation because of mitral valve prolapse. Circ. Cardiovasc. Imaging 8, e003036 (2015).

    Article  PubMed  Google Scholar 

  35. Basso, C. et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132, 556–566 (2015).

    Article  PubMed  Google Scholar 

  36. Rajamannan, N. M. et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107, 2181–2184 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Olsson, M. et al. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J. Am. Coll. Cardiol. 23, 1162–1170 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Otto, C. M. et al. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90, 844–853 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Dweck, M. R. et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 125, 76–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Dweck, M. R. et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ. Cardiovasc. Imaging 7, 371–378 (2014).

    Article  PubMed  Google Scholar 

  41. Marincheva-Savcheva, G. et al. Imaging of the aortic valve using fluorodeoxyglucose positron emission tomography increased valvular fluorodeoxyglucose uptake in aortic stenosis. J. Am. Coll. Cardiol. 57, 2507–2515 (2011).

    Article  PubMed  Google Scholar 

  42. Le, V. F. et al. Valve tissue characterization by magnetic resonance imaging in calcific aortic valve disease. Can. J. Cardiol. 30, 1676–1683 (2014).

    Article  Google Scholar 

  43. Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A. & Tam, J. Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Rossebo, A. B. et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359, 1343–1356 (2008).

    Article  PubMed  Google Scholar 

  45. Aggarwal, S. R. et al. Sex differences in aortic valve calcification measured by multidetector computed tomography in aortic stenosis. Circ. Cardiovasc. Imaging 6, 40–47 (2013).

    Article  PubMed  Google Scholar 

  46. Clavel, M. A. et al. The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler echocardiographic and computed tomographic study. J. Am. Coll. Cardiol. 62, 2329–2338 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen, V. et al. Sex differences in the progression of aortic stenosis and prognostic implication: the COFRASA-GENERAC Study. JACC Cardiovasc. Imaging 9, 499–501 (2016).

    Article  PubMed  Google Scholar 

  48. Minners, J. et al. Inconsistent grading of aortic valve stenosis by current guidelines: haemodynamic studies in patients with apparently normal left ventricular function. Heart 96, 1463–1468 (2010).

    Article  PubMed  Google Scholar 

  49. Bahlmann, E. et al. Impact of pressure recovery on echocardiographic assessment of asymptomatic aortic stenosis: a SEAS substudy. JACC Cardiovasc. Imaging 3, 555–562 (2010).

    Article  PubMed  Google Scholar 

  50. Dyverfeldt, P., Hope, M. D., Tseng, E. E. & Saloner, D. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc. Imaging 6, 64–71 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garcia, D., Dumesnil, J. G., Durand, L. G., Kadem, L. & Pibarot, P. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J. Am. Coll. Cardiol. 41, 435–442 (2003).

    Article  PubMed  Google Scholar 

  52. Ng, A. C. et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ. Cardiovasc. Imaging 3, 94–102 (2010).

    Article  PubMed  Google Scholar 

  53. O'Brien, B. et al. Integration of 3D imaging data in the assessment of aortic stenosis: impact on classification of disease severity. Circ. Cardiovasc. Imaging 4, 566–573 (2011).

    Article  PubMed  Google Scholar 

  54. Kamperidis, V. et al. Low gradient severe aortic stenosis with preserved ejection fraction: reclassification of severity by fusion of Doppler and computed tomographic data. Eur. Heart J. 36, 2087–2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Adda, J. et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ. Cardiovasc. Imaging 5, 27–35 (2012).

    Article  PubMed  Google Scholar 

  56. Lancellotti, P. et al. Clinical outcome in asymptomatic severe aortic stenosis: insights from the new proposed aortic stenosis grading classification. J. Am. Coll. Cardiol. 59, 235–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Herrmann, S. et al. Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J. Am. Coll. Cardiol. 58, 402–412 (2011).

    Article  PubMed  Google Scholar 

  58. Hoffmann, R., Altiok, E., Friedman, Z., Becker, M. & Frick, M. Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography in comparison to late gadolinium enhancement cardiac magnetic resonance for analysis of myocardial fibrosis in severe aortic stenosis. Am. J. Cardiol. 114, 1083–1088 (2014).

    Article  PubMed  Google Scholar 

  59. Mahmod, M. et al. Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis. Circ. Cardiovasc. Imaging 6, 808–816 (2013).

    Article  PubMed  Google Scholar 

  60. Unger, R. H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Goldberg, I. J., Trent, C. M. & Schulze, P. C. Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lancellotti, P. et al. Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation 126, 851–859 (2012).

    Article  PubMed  Google Scholar 

  63. Marechaux, S. et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur. Heart J. 31, 1390–1397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stewart, R. A. et al. Left ventricular systolic and diastolic function assessed by tissue Doppler imaging and outcome in asymptomatic aortic stenosis. Eur. Heart J. 31, 2216–2222 (2010).

    Article  PubMed  Google Scholar 

  65. Yingchoncharoen, T., Gibby, C., Rodriguez, L. L., Grimm, R. A. & Marwick, T. H. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ. Cardiovasc. Imaging 5, 719–725 (2012).

    Article  PubMed  Google Scholar 

  66. Hachicha, Z., Dumesnil, J. G., Bogaty, P. & Pibarot, P. Paradoxical low-flow low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115, 2856–2864 (2007).

    Article  PubMed  Google Scholar 

  67. Jander, N. et al. Outcome of patients with low-gradient “severe” aortic stenosis and preserved ejection fraction. Circulation 123, 887–895 (2011).

    Article  PubMed  Google Scholar 

  68. Clavel, M. A. et al. Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J. Am. Coll. Cardiol. 60, 1259–1267 (2012).

    Article  PubMed  Google Scholar 

  69. Eleid, M. F. et al. Flow-gradient patterns in severe aortic stenosis with preserved ejection fraction: clinical characteristics and predictors of survival. Circulation 128, 1781–1789 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mehrotra, P. et al. Differential left ventricular remodelling and longitudinal function distinguishes low flow from normal-flow preserved ejection fraction low-gradient severe aortic stenosis. Eur. Heart J. 34, 1906–1914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mohty, D. et al. Outcome and impact of surgery in paradoxical low-flow, low-gradient severe aortic stenosis and preserved left ventricular ejection fraction: a cardiac catheterization study. Circulation 128 (11 Suppl. 1), S235–S242 (2013).

    Article  PubMed  Google Scholar 

  72. Maes, F. et al. Natural history of paradoxical low-gradient severe aortic stenosis. Circ. Cardiovasc. Imaging 7, 714–722 (2014).

    Article  PubMed  Google Scholar 

  73. Ozkan, A., Hachamovitch, R., Kapadia, S. R., Tuzcu, E. M. & Marwick, T. H. Impact of aortic valve replacement on outcome of symptomatic patients with severe aortic stenosis with low gradient and preserved left ventricular ejection fraction. Circulation 128, 622–631 (2013).

    Article  PubMed  Google Scholar 

  74. Clavel, M. A. et al. Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF. JACC Cardiovasc. Imaging 6, 175–183 (2013).

    Article  PubMed  Google Scholar 

  75. Fougeres, E. et al. Outcomes of pseudo-severe aortic stenosis under conservative treatment. Eur. Heart J. 33, 2426–2433 (2012).

    Article  PubMed  Google Scholar 

  76. Bartko, P. E. et al. Two-dimensional strain for the assessment of left ventricular function in low flow-low gradient aortic stenosis, relationship to hemodynamics, and outcome: a substudy of the multicenter TOPAS study. Circ. Cardiovasc. Imaging 6, 268–276 (2013).

    Article  PubMed  Google Scholar 

  77. Le, V. F. et al. Impact of low flow on the outcome of high-risk patients undergoing transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 62, 782–788 (2013).

    Article  Google Scholar 

  78. Herrmann, H. C. et al. Predictors of mortality and outcomes of therapy in low-flow severe aortic stenosis: a Placement of Aortic Transcatheter Valves (PARTNER) trial analysis. Circulation 127, 2316–2326 (2013).

    Article  PubMed  Google Scholar 

  79. O'Sullivan, C. J. et al. Clinical outcomes of patients with low-flow, low-gradient, severe aortic stenosis and either preserved or reduced ejection fraction undergoing transcatheter aortic valve implantation. Eur. Heart J. 34, 3437–3450 (2013).

    Article  PubMed  Google Scholar 

  80. Kusunose, K. et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ. Cardiovasc. Imaging 7, 938–945 (2014).

    Article  PubMed  Google Scholar 

  81. Bahlmann, E. et al. Prognostic value of energy loss index in asymptomatic aortic stenosis. Circulation 127, 1149–1156 (2013).

    Article  PubMed  Google Scholar 

  82. Barone-Rochette, G. et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J. Am. Coll. Cardiol. 64, 144–154 (2014).

    Article  PubMed  Google Scholar 

  83. Dweck, M. R. et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J. Am. Coll. Cardiol. 58, 1271–1279 (2011).

    Article  PubMed  Google Scholar 

  84. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57, 891–903 (2011).

    Article  PubMed  Google Scholar 

  85. Singh, A. et al. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur. Heart J. Cardiovasc. Imaging 16, 763–770 (2015).

    Article  PubMed  Google Scholar 

  86. de Meester de Ravenstein, C. et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J. Cardiovasc. Magn. Reson. 17, 48 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Clavel, M. A. et al. Impact of aortic valve calcification, as measured by MDCT, on survival in patients with aortic stenosis: results of an international registry study. J. Am. Coll. Cardiol. 64, 1202–1213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Michelena, H. I. et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation 129, 2691–2704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Meierhofer, C. et al. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging 14, 797–804 (2013).

    Article  PubMed  Google Scholar 

  90. Muzzarelli, S. et al. Quantification of aortic flow by phase-contrast magnetic resonance in patients with bicuspid aortic valve. Eur. Heart J. Cardiovasc. Imaging 15, 77–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Hope, M. D. et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc. Imaging 4, 781–787 (2011).

    Article  PubMed  Google Scholar 

  92. Barker, A. J. et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5, 457–466 (2012).

    Article  PubMed  Google Scholar 

  93. Mahadevia, R. et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129, 673–682 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Bissell, M. M. et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6, 499–507 (2013).

    Article  PubMed  Google Scholar 

  95. Ewe, S. H. et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am. J. Cardiol. 112, 560–566 (2013).

    Article  PubMed  Google Scholar 

  96. Kang, J. W. et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc. Imaging 6, 150–161 (2013).

    Article  PubMed  Google Scholar 

  97. Calleja, A. et al. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ. Cardiovasc. Imaging 6, 99–108 (2013).

    Article  PubMed  Google Scholar 

  98. Kim, D. H. et al. Aortic valve adaptation to aortic root dilatation: insights into the mechanism of functional aortic regurgitation from 3-dimensional cardiac computed tomography. Circ. Cardiovasc. Imaging 7, 828–835 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Myerson, S. G. et al. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Circulation 126, 1452–1460 (2012).

    Article  PubMed  Google Scholar 

  100. Skaug, T. R. et al. Quantification of aortic regurgitation using high-pulse repetition frequency three-dimensional colour Doppler. Eur. Heart J. Cardiovasc. Imaging 15, 615–622 (2014).

    Article  PubMed  Google Scholar 

  101. Ewe, S. H. et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: speckle tracking echocardiographic analysis. Eur. Heart J. Cardiovasc. Imaging 16, 992–999 (2015).

    PubMed  Google Scholar 

  102. Kusunose, K., Agarwal, S., Marwick, T. H., Griffin, B. P. & Popovic, Z. B. Decision making in asymptomatic aortic regurgitation in the era of guidelines: incremental values of resting and exercise cardiac dysfunction. Circ. Cardiovasc. Imaging 7, 352–362 (2014).

    Article  PubMed  Google Scholar 

  103. Olsen, N. T. et al. Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovasc. Imaging 4, 223–230 (2011).

    Article  PubMed  Google Scholar 

  104. Onishi, T. et al. Preoperative systolic strain rate predicts postoperative left ventricular dysfunction in patients with chronic aortic regurgitation. Circ. Cardiovasc. Imaging 3, 134–141 (2010).

    Article  PubMed  Google Scholar 

  105. Azevedo, C. F. et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J. Am. Coll. Cardiol. 56, 278–287 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Jeroen J. Bax.

Ethics declarations

Competing interests

The Department of Cardiology of the Leiden University Medical Center, Netherlands received research grants from Biotronik, Boston Scientific, Edwards Lifesciences, and Medtronic. V.D. received speaker fees from Abbott Vascular. J.J.B. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bax, J., Delgado, V. Advanced imaging in valvular heart disease. Nat Rev Cardiol 14, 209–223 (2017). https://doi.org/10.1038/nrcardio.2017.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing