Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Grey zones in cardiomyopathies: defining boundaries between genetic and iatrogenic disease

Key Points

  • Early description of cardiomyopathies originated from severe, paradigmatic case series that described worst-case scenarios

  • The entire range of cardiomyopathies has subsequently emerged, including mild phenotypes that might overlap with normal variation

  • Current screening policies have the potential to identify affected individuals at very early stages, leading to effective prevention of cardiomyopathy-related complications, including sudden cardiac death, but also increase the risk of overdiagnosing healthy individuals

  • A systematic approach is necessary in patients with mild phenotypes suggestive of, but not definitely diagnostic for, cardiomyopathies

  • We propose that at least one of five major criteria should be fulfilled before a diagnosis of cardiomyopathy is made

Abstract

Genetic cardiomyopathies are complex diseases with heterogeneous clinical presentation and phenotypes. Early descriptions of cardiomyopathies originated from case studies involving individuals with severe, paradigmatic presentation, which provided insight into the worst-case scenarios of these conditions. With time, improved diagnostic sensitivity and awareness of cardiomyopathies has uncovered a more heterogeneous disease spectrum, including mild phenotypes overlapping with physiological variation. This diagnostic 'grey area' poses important dilemmas, particularly in athletes. Current screening policies have the potential to identify affected individuals at very early stages, leading to effective prevention of cardiomyopathy-related complications such as sudden cardiac death. Conversely, however, some physicians actively impose diagnoses on individuals who perceive themselves to be disease-free. In addition, the high sensitivity of contemporary diagnostic techniques carries a serious risk of misinterpreting physiological variation as disease. In this Review, three of the most common and controversial areas are discussed, including left ventricular hypertrophy; left ventricular dilatation, noncompaction, and fibrosis; and arrhythmias originating from the right ventricle. A systematic and cautious approach is necessary in patients with mild phenotypes suggestive of, but not definitely diagnostic for, cardiomyopathies. Preventing the mislabelling of healthy individuals and overdiagnosis should be a priority, with the aim to combine adequate counselling and optimal protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Athlete's heart versus hypertrophic cardiomyopathy (HCM).
Figure 2: Typical late gadolinium enhancement image in a patient with hypertrophic cardiomyopathy.
Figure 3: Mild ventricular trabeculation: enough to diagnose a cardiomyopathy?
Figure 4: Comprehensive clinical evaluation in an asymptomatic patient with suspected left ventricular noncompaction (LVNC).
Figure 5: Electrocardiographical characteristics of patients with right ventricular outflow tract tachycardia (RVOTT) and arrhythmogenic right ventricular cardiomyopathy (ARVC).
Figure 6: Electrophysiological characteristics of patients with right ventricular outflow tract tachycardia (RVOTT) and arrhythmogenic right ventricular cardiomyopathy (ARVC).

Similar content being viewed by others

References

  1. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  2. Hershberger, R. E., Cowan, J., Morales, A. & Siegfried, J. D. Progress with genetic cardiomyopathies screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Heart Fail. 2, 253–261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heath, I. Role of fear in overdiagnosis and overtreatment — an essay by Iona Heath. BMJ 349, g6123 (2014).

    Article  PubMed  Google Scholar 

  4. Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Maron, B. J. et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. Circulation 132, e256–e261 (2015).

    PubMed  Google Scholar 

  6. Sheikh, N. et al. Comparison of electrocardiographic criteria for the detection of cardiac abnormalities in elite black and white athletes. Circulation 129, 1637–1649 (2014).

    Article  PubMed  Google Scholar 

  7. Papadakis, M. et al. Prevalence and significance of T-wave inversions in predominantly Caucasian adolescent athletes. Eur. Heart J. 30, 1728–1735 (2009).

    Article  PubMed  Google Scholar 

  8. Magalski, A. et al. Relation of race to electrocardiographic patterns in elite American football players. J. Am. Coll. Cardiol. 51, 2250–2255 (2008).

    Article  PubMed  Google Scholar 

  9. Papadakis, M. et al. The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. Eur. Heart J. 32, 2304–2313 (2011).

    Article  PubMed  Google Scholar 

  10. Pelliccia, A., Maron, B. J., Spataro, A., Proschan, M. A. & Spirito, P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N. Engl. J. Med. 324, 295–301 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Rawlins, J. et al. Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. Circulation 121, 1078–1785 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Pelliccia, A., Maron, B. J., Culasso, F., Spataro, A. & Caselli, G. Athlete's heart in women. Echocardiographic characterization of highly trained elite female athletes. JAMA 276, 211–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Drezner, J. A. et al. Normal electrocardiographic findings: recognising physiological adaptations in athletes. Br. J. Sports Med. 47, 125–136 (2013).

    Article  PubMed  Google Scholar 

  14. Corrado, D. et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur. Heart J. 31, 243–259 (2010).

    Article  PubMed  Google Scholar 

  15. Drezner, J. A. et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of cardiomyopathy. Br. J. Sports Med. 47, 137–152 (2013).

    Article  PubMed  Google Scholar 

  16. Pelliccia, A. et al. Outcomes in athletes with marked ECG repolarization abnormalities. N. Engl. J. Med. 358, 152–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Schnell, F. et al. Recognition and significance of pathological T-wave inversions in athletes. Circulation 131, 165–173 (2015).

    Article  PubMed  Google Scholar 

  18. Caselli, S. et al. Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 114, 1383–1389 (2014).

    Article  PubMed  Google Scholar 

  19. Maron, B. J. Distinguishing hypertrophic cardiomyopathy from athlete's heart physiological remodelling: clinical significance, diagnostic strategies and implications for preparticipation screening. Br. J. Sports Med. 43, 649–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Sheikh, N. et al. Clinical profile of athletes with hypertrophic cardiomyopathy: the “grey zone” revisited. Circ. Cardiovasc. Imaging 8, e003454 (2015).

    Article  PubMed  Google Scholar 

  21. Flett, A. S. et al. Diagnosis of apical hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left ventricular hypertrophy. Int. J. Cardiol. 183, 143–148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Naylor, L. H., George, K., O'Driscoll, G. & Green, D. J. The athlete's heart: a contemporary appraisal of the 'Morganroth hypothesis'. Sports Med. 38, 69–90 (2008).

    Article  PubMed  Google Scholar 

  23. Haykowsky, M. J. & Tomczak, C. R. LV hypertrophy in resistance or endurance trained athletes: the Morganroth hypothesis is obsolete, most of the time. Heart 100, 1225–1226 (2014).

    Article  PubMed  Google Scholar 

  24. Elliott, P. M. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2733–2779 (2014).

    Article  PubMed  Google Scholar 

  25. Ho, C. Y. et al. Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 105, 2992–2997 (2002).

    Article  PubMed  Google Scholar 

  26. Kauer, F. et al. Diastolic abnormalities in normal phenotype hypertrophic cardiomyopathy gene carriers: a study using speckle tracking echocardiography. Echocardiography 30, 558–563 (2013).

    Article  PubMed  Google Scholar 

  27. Sharma, S. et al. Utility of cardiopulmonary exercise in the assessment of clinical determinants of functional capacity in hypertrophic cardiomyopathy. Am. J. Cardiol. 86, 162–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Olivotto, I. et al. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 33, 2044–2051 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gimeno, J. R. et al. Exercise-induced ventricular arrhythmias and risk of sudden cardiac death in patients with hypertrophic cardiomyopathy. Eur. Heart J. 30, 2599–2605 (2009).

    Article  PubMed  Google Scholar 

  30. Weiner, R. B. et al. Regression of “gray zone” exercise-induced concentric left ventricular hypertrophy during prescribed detraining. J. Am. Coll. Cardiol. 59, 1992–1994 (2012).

    Article  PubMed  Google Scholar 

  31. Leone, O. et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc. Pathol. 21, 245–274 (2012).

    Article  PubMed  Google Scholar 

  32. Walsh, R. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. http://dx.doi.org/doi:10.1038/gim.2016.90 (2016).

  33. Mogensen, J. et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur. Heart J. 36, 1367–1370 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Bogaert, J. & Olivotto, I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology 273, 329–348 (2014).

    Article  PubMed  Google Scholar 

  35. Olivotto, I. et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 52, 559–566 (2008).

    Article  PubMed  Google Scholar 

  36. Ingles, J., Burns, C., Barratt, A. & Semsarian, C. Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection. Circ. Cardiovasc. Genet. 8, 852–859 (2015).

    Article  PubMed  Google Scholar 

  37. Kwon, J. M. & Steiner, R. D. “I'm fine; I'm just waiting for my disease”: the new and growing class of presymptomatic patients. Neurology 77, 522–523 (2011).

    Article  PubMed  Google Scholar 

  38. Valente, A. M. et al. Comparison of echocardiographic and cardiac magnetic resonance imaging in hypertrophic cardiomyopathy sarcomere mutation carriers without left ventricular hypertrophy. Circ. Cardiovasc. Genet. 6, 230–237 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maron, M. S. et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 5, 441–447 (2012).

    Article  PubMed  Google Scholar 

  40. Maron, M. S. et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124, 40–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Gruner, C. et al. Significance of left ventricular apical–basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur. Heart J. 35, 2706–2713 (2014).

    Article  PubMed  Google Scholar 

  42. Ho, C. Y. et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363, 552–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maron, B. J. et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 66, 2362–2371 (2015).

    Article  PubMed  Google Scholar 

  44. Pelliccia, A. et al. Recommendations for competitive sports participation in athletes with cardiovascular disease. Eur. Heart J. 26, 1422–1445 (2005).

    Article  PubMed  Google Scholar 

  45. Olivotto, I., Cecchi, F., Poggesi, C. & Yacoub, M. H. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ. Heart Fail. 5, 535–546 (2012).

    Article  PubMed  Google Scholar 

  46. Olivotto, I. et al. The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. J. Cardiovasc. Transl Res. 2, 349–367 (2009).

    Article  PubMed  Google Scholar 

  47. George, K. et al. The endurance athletes heart: acute stress and chronic adaptation. Br. J. Sports Med. 46, i29–i36 (2012).

    Article  PubMed  Google Scholar 

  48. Pelliccia, A., Culasso, F., Di Paolo, F. M. & Maron, B. J. Physiologic left ventricular cavity dilatation in elite athletes. Ann. Intern. Med. 130, 23–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Abernethy, W. B., Choo, J. K. & Hutter, A. M. Echocardiographic characteristics of professional football players. J. Am. Coll. Cardiol. 41, 280–284 (2003).

    Article  PubMed  Google Scholar 

  50. Abergel, E. et al. Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J. Am. Coll. Cardiol. 44, 144–149 (2004).

    Article  PubMed  Google Scholar 

  51. Grünig, E. et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 31, 186–194 (1998).

    Article  PubMed  Google Scholar 

  52. Kim, J. H. et al. Significance of electrocardiographic right bundle branch block in trained athletes. Am. J. Cardiol. 107, 1083–1089 (2011).

    Article  PubMed  Google Scholar 

  53. Zaidi, A. et al. Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation 127, 1783–1792 (2013).

    Article  PubMed  Google Scholar 

  54. Lehrke, S. et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97, 727–732 (2011).

    Article  PubMed  Google Scholar 

  55. Chan, R. H. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130, 484–495 (2014).

    Article  PubMed  Google Scholar 

  56. Whyte, G. et al. Physiological profile and predictors of cycling performance in ultra-endurance triathletes. J. Sports Med. Phys. Fitness 40, 103–109 (2000).

    CAS  PubMed  Google Scholar 

  57. Duncan, A. M., Francis, D. P., Gibson, D. G. & Henein, M. Y. Limitation of exercise tolerance in chronic heart failure: distinct effects of left bundle-branch block and coronary artery disease. J. Am. Coll. Cardiol. 43, 1524–1531 (2004).

    Article  PubMed  Google Scholar 

  58. Pelliccia, A. et al. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105, 944–949 (2002).

    Article  PubMed  Google Scholar 

  59. Caforio, A. L. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).

    Article  PubMed  Google Scholar 

  60. Parks, S. B. et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 156, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grant, R. T. An unusual anomaly of the coronary vessels in the malformed heart of a child. Heart 13, 273–283 (1926).

    Google Scholar 

  62. Chin, T. K., Perloff, J. K., Williams, R. G., Jue, K. & Mohrmann, R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82, 507–513 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Arbustini, E., Weidemann, F. & Hall, J. L. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J. Am. Coll. Cardiol. 64, 1840–1850 (2014).

    Article  PubMed  Google Scholar 

  64. Xing, Y. et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol. Genet. Metab. 88, 71–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Jenni, R., Oechslin, E., Schneider, J., Attenhofer Jost, C. & Kaufmann, P. A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86, 666–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petersen, S. E. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 101–105 (2005).

    Article  PubMed  Google Scholar 

  67. Boyd, M. T., Seward, J. B., Jamil Tajik, A. A. & Edwards, W. D. Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J. Am. Coll. Cardiol. 9, 323–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Kohli, S. K. et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur. Heart J. 29, 89–95 (2008).

    Article  PubMed  Google Scholar 

  69. Paterick, T. E. et al. Left ventricular noncompaction: a 25-year odyssey. J. Am. Soc. Echocardiogr. 25, 363–375 (2012).

    Article  PubMed  Google Scholar 

  70. Paterick, T. E. & Tajik, A. J. Left ventricular noncompaction: a diagnostically challenging cardiomyopathy. Circ. J. 76, 1556–1562 (2012).

    Article  PubMed  Google Scholar 

  71. Captur, G., Flett, A. S., Jacoby, D. L & Moon, J. C. Left ventricular non-noncompaction: the mitral valve prolapse of the 21st century? Int. J. Cardiol. 164, 3–6 (2013).

    Article  PubMed  Google Scholar 

  72. Paterick, T. E. & Tajik, A. J. Left ventricular noncompaction cardiomyopathy: lessons from the past to explain a diagnostic conundrum. J. Am. Soc. Echocardiogr. 27, 1128–1130 (2014).

    Article  PubMed  Google Scholar 

  73. Zemrak, F. et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J. Am. Coll. Cardiol. 64, 1971–1980 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Basso, C., Corrado, D., Marcus, F. I., Nava, A. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373, 1289–1300 (2009).

    Article  PubMed  Google Scholar 

  75. Gaita, F. et al. Long-term follow-up of right ventricular monomorphic extrasystoles. J. Am. Coll. Cardiol. 38, 364–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Santangeli, P. et al. Noninvasive diagnosis of electroanatomic abnormalities in arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 3, 632–638 (2010).

    Article  PubMed  Google Scholar 

  77. O'Donnell, D., Cox, D., Bourke, J., Mitchell, L. & Furniss, S. Clinical and electrophysiological differences between patients with arrhythmogenic right ventricular dysplasia and right ventricular outflow tract tachycardia. Eur. Heart J. 24, 801–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Ellison, K. E., Friedman, P. L., Ganz, L. I. & Stevenson, W. G. Entrainment mapping and radiofrequency catheter ablation of ventricular tachycardia in right ventricular dysplasia. J. Am. Coll. Cardiol. 32, 724–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Miljoen, H. et al. Electroanatomic mapping characteristics of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Europace 7, 516–524 (2005).

    Article  PubMed  Google Scholar 

  80. Cox, M. G. et al. Activation delay and VT parameters in arrhythmogenic right ventricular dysplasia/cardiomyopathy: toward improvement of diagnostic ECG criteria. J. Cardiovasc. Electrophysiol. 19, 775–781 (2008).

    Article  PubMed  Google Scholar 

  81. Hoffmayer, K. S. et al. Electrocardiographic comparison of ventricular arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy and right ventricular outflow tract tachycardia. J. Am. Coll. Cardiol. 58, 831–838 (2011).

    PubMed  Google Scholar 

  82. Corrado, D. et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 111, 3042–3050 (2005).

    Article  PubMed  Google Scholar 

  83. Quarta, G. et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation 123, 2701–2709 (2011).

    Article  PubMed  Google Scholar 

  84. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia proposed modification of the task force criteria. Circulation 121, 1533–1541 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pinto, Y. M. et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 37, 1850–1858 (2016).

    Article  PubMed  Google Scholar 

  86. Maron, B. J. et al. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J. Am. Coll. Cardiol. 64, 83–99 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I.O. is supported by the Italian Ministry of Health: “Left ventricular hypertrophy in aortic valve disease and hypertrophic cardiomyopathy: genetic basis, biophysical correlates and viral therapy models” (RF-2013-02356787), and “Mechanisms and treatment of coronary microvascular dysfunction in patients with genetic or secondary left ventricular hypertrophy” (NET-2011-02347173).

Author information

Authors and Affiliations

Authors

Contributions

G.Q. and L.O. researched data for the article. G.Q., M.P., P.D.D., N.M., A.I., and L.O. wrote the manuscript, and G.Q., M.P., A.G., M.S., and L.O. reviewed and edited the manuscript before submission. All the authors contributed to discussion of content.

Corresponding author

Correspondence to Giovanni Quarta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarta, G., Papadakis, M., Donna, P. et al. Grey zones in cardiomyopathies: defining boundaries between genetic and iatrogenic disease. Nat Rev Cardiol 14, 102–112 (2017). https://doi.org/10.1038/nrcardio.2016.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing