Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease

Key Points

  • An increasing number of patients presenting with myocardial infarction (MI) are diagnosed with non-ST-segment elevation myocardial infarction rather than an MI with ST-segment elevation, and consequently survive their first event

  • The shift in the clinical presentation of acute coronary syndrome mandates a critical reassessment of the underlying mechanisms and the concept of the vulnerable plaque

  • This change in clinical presentation warrants re-assessment of currently applied cardiovascular risk scores, preclinical experiments, and the validity of population data collected before the application of current preventive interventions

Abstract

The concept of the 'vulnerable plaque' originated from pathological observations in patients who died from acute coronary syndrome. This recognition spawned a generation of research that led to greater understanding of how complicated atherosclerotic plaques form and precipitate thrombotic events. In current practice, an increasing number of patients who survive their first event present with non-ST-segment elevation myocardial infarction (NSTEMI) rather than myocardial infarction (MI) with ST-segment elevation (STEMI). The culprit lesions that provide the pathological substrate for NSTEMI can vary considerably from the so-called 'vulnerable plaque'. The shift in clinical presentation of MI and stroke corresponds temporally to a progressive change in the characteristics of human plaques away from the supposed characteristics of vulnerability. These alterations in the structure and function of human atherosclerotic lesions might mirror the modifications that are produced in experimental plaques by lipid lowering, inspired by the vulnerable plaque construct. The shift in the clinical presentations of the acute coronary syndromes mandates a critical reassessment of the underlying mechanisms, proposed risk scores, the results and interpretation of preclinical experiments, as well as recognition of the limitations of the use of population data and samples collected before the application of current preventive interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gradual decline in mortality and hospitalizations after acute coronary syndrome and acute stroke.
Figure 2: Changes in plaque characteristics underlying luminal occlusive thrombosis.
Figure 3: The changes in plaque composition over time observed in carotid arterial plaques that have been dissected by endarterectomy.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. QuickStats: age-adjusted death rates* for heart disease and cancer, by sex — United States, 1980–2011. CDC https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6337a6.htm (2014).

  2. European Society of Cardiology. 2012 European cardiovascular disease statistics — visuals. escardio http://www.escardio.org/The-ESC/What-we-do/Initiatives/EuroHeart/2012-European-Cardiovascular-Disease-Statistics-Visuals (2012).

  3. National Institutes of Health. Morbidity & mortality: 2012 chart book on cardiovascular, lung, and blood diseases. NHLBI https://www.nhlbi.nih.gov/files/docs/research/2012_ChartBook_508.pdf (2012).

  4. Yeh, R. W. et al. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med. 362, 2155–2165 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Truven Health Analytics. Trends in acute myocardial infarction incidence, detection, and treatment. 100TopHospitals https://100tophospitals.com/Portals/2/assets/TOP_15192_1214_AMITrends_WEB.PDF (2015).

  6. Khera, S. et al. Non-ST-elevation myocardial infarction in the United States: contemporary trends in incidence, utilization of the early invasive strategy, and in-hospital outcomes. J. Am. Heart Assoc. 3, e000995 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mannsverk, J. et al. Trends in modifiable risk factors are associated with declining incidence of hospitalized and nonhospitalized acute coronary heart disease in a population. Circulation 133, 74–81 (2016).

    Article  PubMed  Google Scholar 

  8. Plakht, Y., Gilutz, H. & Shiyovich, A. Temporal trends in acute myocardial infarction: what about survival of hospital survivors? Disparities between STEMI & NSTEMI remain. Soroka acute myocardial infarction II (SAMI-II) project. Int. J. Cardiol. 203, 1073–1081 (2016).

    Article  PubMed  Google Scholar 

  9. Moran, A. E. et al. The global burden of ischemic heart disease in 1990 and 2010: the global burden of disease 2010 study. Circulation 129, 1493–1501 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ford, E. S. & Capewell, S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu. Rev. Public Health 32, 5–22 (2011).

    Article  PubMed  Google Scholar 

  11. Franco, M. et al. Impact of energy intake, physical activity, and population-wide weight loss on cardiovascular disease and diabetes mortality in Cuba, 1980–2005. Am. J. Epidemiol. 166, 1374–1380 (2007).

    Article  PubMed  Google Scholar 

  12. Guasch-Ferré, M. et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 102, 1563–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. US Food and Drug Administration. Sodium in your diet: use the nutrition facts label and reduce your intake. FDA http://www.fda.gov/Food/ResourcesForYou/Consumers/ucm315393.htm (2016).

  14. Bibbins-Domingo, K. et al. Projected effect of dietary salt reductions on future cardiovascular disease. N. Engl. J. Med. 362, 590–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seo, D. C. & Torabi, M. R. Reduced admissions for acute myocardial infarction associated with a public smoking ban: matched controlled study. J. Drug Educ. 37, 217–226 (2007).

    Article  PubMed  Google Scholar 

  16. Juster, H. R. et al. Declines in hospital admissions for acute myocardial infarction in New York state after implementation of a comprehensive smoking ban. Am. J. Public Health 97, 2035–2039 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sargent, R. P., Shepard, R. M. & Glantz, S. A. Reduced incidence of admissions for myocardial infarction associated with public smoking ban: before and after study. BMJ 328, 977–980 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmucker, J. et al. Smoking ban in public areas is associated with a reduced incidence of hospital admissions due to ST-elevation myocardial infarctions in non-smokers. Results from the Bremen STEMI Registry. Eur. J. Prev. Cardiol. 21, 1180–1186 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2889–2934 (2014).

    Article  PubMed  Google Scholar 

  20. Martin, S. S. et al. Clinician-patient risk discussion for atherosclerotic cardiovascular disease prevention: importance to implementation of the 2013 ACC/AHA Guidelines. J. Am. Coll. Cardiol. 65, 1361–1368 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robinson, J. G. & Stone, N. J. The 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk: a new paradigm supported by more evidence. Eur. Heart J. 36, 2110–2118 (2015).

    Article  PubMed  Google Scholar 

  22. Ninomiya, T. et al. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta-analysis of randomised controlled trials. BMJ 347, f5680 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Herrington, W., Lacey, B., Sherliker, P., Armitage, J. & Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 118, 535–546 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Vandvik, P. O. et al. Primary and secondary prevention of cardiovascular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141, e637S–e668S (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Udell, J. A. et al. Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials. Eur. Heart J. 37, 390–399 (2016).

    PubMed  Google Scholar 

  26. Afzal, S., Tybjærg-Hansen, A., Jensen, G. B. & Nordestgaard, B. G. Change in body mass index associated with lowest mortality in Denmark, 1976–2013. JAMA 315, 1989–1996 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Mozaffarian, D. et al. Heart disease and stroke statistics–2016 update. Circulation 133, e38–e360 (2016).

    PubMed  Google Scholar 

  28. Sidney, S. et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 1, 595–599 (2016).

    Article  Google Scholar 

  29. Pearson-Stuttard, J. et al. Modelling future cardiovascular disease mortality in the United States: national trends and racial and ethnic disparities. Circulation 133, 967–978 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keller, T. et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N. Engl. J. Med. 9361, 868–877 (2009).

    Article  Google Scholar 

  31. Reichlin, T. et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. CMAJ 187, E243–E252 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shah, A. S. V. et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet 386, 2481–2488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neumann, J. T. et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol. 1, 397–404 (2016).

    Article  PubMed  Google Scholar 

  34. Schofer, N. et al. Gender-specific diagnostic performance of a new high-sensitivity cardiac troponin I assay for detection of acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care http://dx.doi.org/10.1177/2048872615626660 (2016).

  35. D'Souza, M. et al. Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays. Am. J. Med. 128, 852–860 (2015).

    Article  PubMed  Google Scholar 

  36. Rodriguez, F. & Mahaffey, K. W. Management of patients with NSTE-ACS: a comparison of the recent AHA/AAC and ESC guidelines. J. Am. Coll. Cardiol. 68, 313–321 (2016).

    Article  PubMed  Google Scholar 

  37. Underhill, H. R. et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am. Heart J. 155, e1–e8 (2008).

  38. Crisby, M. et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103, 926–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Puri, R. et al. Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from SATURN. Eur. Heart J. Cardiovasc. Imaging 15, 380–388 (2014).

    Article  PubMed  Google Scholar 

  40. Libby, P. How does lipid lowering prevent coronary events? New insights from human imaging trials. Eur. Heart J. 36, 472–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, S. J. et al. Effect of statin treatment on modifying plaque composition: a double-blind, randomized Study. J. Am. Coll. Cardiol. 67, 1772–1783 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 368, 2004–2013 (2013).

    CAS  PubMed  Google Scholar 

  43. Davies, M. J. & Thomas, A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310, 1137–1140 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. van der Wal, A. C., Becker, A. E., van der Loos, C. M. & Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Falk, E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50, 127–134 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Lammeren, G. W. et al. Time-dependent changes in atherosclerotic plaque composition in patients undergoing carotid surgery. Circulation 129, 2269–2276 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Criqui, M. H. et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 311, 271–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puri, R. et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 65, 1273–1282 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Smits, P. C. et al. Coronary artery disease: arterial remodelling and clinical presentation. Heart 82, 461–464 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tian, J. et al. Significance of intraplaque neovascularisation for vulnerability: optical coherence tomography study. Heart 98, 1504–1509 (2012).

    Article  PubMed  Google Scholar 

  52. Farb, A. et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Arbustini, E. et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82, 269–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasterkamp, G. et al. Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries. Arterioscler. Thromb. Vasc. Biol. 19, 54–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Buffon, A. et al. Widespread coronary inflammation in unstable angina. N. Engl. J. Med. 347, 5–12 (2002).

    Article  PubMed  Google Scholar 

  56. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Arbab-Zadeh, A. & Fuster, V. The myth of the 'vulnerable plaque': transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kelly, C. R. et al. Relation of C-reactive protein levels to instability of untreated vulnerable coronary plaques (from the PROSPECT study). Am. J. Cardiol. 114, 376–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Xie, Y. et al. Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study. JACC Cardiovasc. Imaging 7, 397–405 (2014).

    Article  PubMed  Google Scholar 

  60. Libby, P. & Theroux, P. Pathophysiology of coronary artery disease. Circulation 111, 3481–3488 (2005).

    Article  PubMed  Google Scholar 

  61. Motoyama, S. et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 66, 337–346 (2015).

    Article  PubMed  Google Scholar 

  62. Ahmadi, A. et al. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ. Res. 117, 99–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Yokoya, K. et al. Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: a study based on four serial coronary arteriograms per year. Circulation 100, 903–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Takaya, N. et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 111, 2768–2775 (2005).

    Article  PubMed  Google Scholar 

  65. Hellings, W. E. et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121, 1941–1950 (2010).

    Article  PubMed  Google Scholar 

  66. Koton, S. et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA 312, 259–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Vaartjes, I., O'Flaherty, M., Capewell, S., Kappelle, J. & Bots, M. Remarkable decline in ischemic stroke mortality is not matched by changes in incidence. Stroke 44, 591–597 (2013).

    Article  PubMed  Google Scholar 

  68. Lackland, D. T. et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke 45, 315–353 (2014).

    Article  PubMed  Google Scholar 

  69. Verhoeven, B. A. N. et al. Athero-express: Differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur. J. Epidemiol. 19, 1127–1133 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Rozanski, A. et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J. Am. Coll. Cardiol. 61, 1054–1065 (2013).

    Article  PubMed  Google Scholar 

  71. Durand, E. et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109, 2503–2506 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Saia, F. et al. Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc. Imaging 8, 566–575 (2015).

    Article  PubMed  Google Scholar 

  73. Heikkila, H. M. et al. Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-α. Arterioscler. Thromb. Vasc. Biol. 28, 309–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Mäyränpää, M. I., Heikkilä, H. M., Lindstedt, K. A, Walls, A. F. & Kovanen, P. T. Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coron. Artery Dis. 17, 611–621 (2006).

    Article  PubMed  Google Scholar 

  75. Dimmeler, S. & Zeiher, A. M. Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul. Pept. 90, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferrante, G. et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: an in vivo optical coherence tomography study. Eur. Heart J. 31, 451–452 (2010).

    Google Scholar 

  78. Liaw, P. C., Ito, T., Iba, T., Thachil, J. & Zeerleder, S. DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 30, 257–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Koenig, W. High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int. J. Cardiol. 168, 5126–5134 (2013).

    Article  PubMed  Google Scholar 

  80. Duivenvoorden, R., de Groot, E., Stroes, E. S. G. & Kastelein, J. J. P. Surrogate markers in clinical trials — challenges and opportunities. Atherosclerosis 206, 8–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Libby, P. & King, K. Biomarkers: a challenging conundrum in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 35, 2491–2495 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Brennan, M.-L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Granillo, G. A. et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J. Am. Coll. Cardiol. 46, 2038–2042 (2005).

    Article  PubMed  Google Scholar 

  85. Romer, T. et al. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97, 878–885 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Casscells, W. et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347, 1447–1449 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Brugaletta, S. et al. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc. Imaging 4, 647–655 (2011).

    Article  PubMed  Google Scholar 

  88. Fujimoto, J. G. et al. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82, 128–133 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jang, I.-K. et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39, 604–609 (2002).

    Article  PubMed  Google Scholar 

  90. Simpson, R. J. et al. MR imaging-detected carotid plaque hemorrhage is stable for 2 years and a marker for stenosis progression. AJNR Am. J. Neuroradiol. 36, 1171–1175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smilde, T. J. et al. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357, 577–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Kastelein, J. J. P. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Bittencourt, M. S. et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ. Cardiovasc. Imaging 7, 282–291 (2014).

    Article  PubMed  Google Scholar 

  94. Wang, T. J. et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation 126, 1596–1604 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Ridker, P. M. & Cook, N. R. Statins: new American guidelines for prevention of cardiovascular disease. Lancet 382, 1762–1765 (2013).

    Article  PubMed  Google Scholar 

  96. DeFilippis, A. P. et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann. Intern. Med. 162, 266–275 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Goff, D. C. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2935–2959 (2014).

    Article  PubMed  Google Scholar 

  98. Cook, N. R. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115, 928–935 (2007).

    Article  PubMed  Google Scholar 

  99. Rana, J. S. et al. Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population. 67, 2118–2130 (2016).

  100. Blaha, M. J. The critical importance of risk score calibration: time for transformative approach to risk score validation? J. Am. Coll. Cardiol. 67, 2131–2134 (2016).

    Article  PubMed  Google Scholar 

  101. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Williams, H., Johnson, J. L., Carson, K. G. S. & Jackson, C. L. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 22, 788–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Libby, P. Murine 'model' monotheism: an iconoclast at the altar of mouse. Circ. Res. 117, 921–925 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Pasterkamp, G. et al. Human validation of genes associated with a murine atherosclerotic phenotype. Arterioscler. Thromb. Vasc. Biol. 36, 1240–1246 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Shiomi, M. et al. Vasospasm of atherosclerotic coronary arteries precipitates acute ischemic myocardial damage in myocardial infarction-prone strain of the watanabe heritable hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol. 33, 2518–2523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burke, A. P. et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Dai, J. et al. Association between cholesterol crystals and culprit lesion vulnerability in patients with acute coronary syndrome: an optical coherence tomography study. Atherosclerosis 247, 111–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ino, Y. et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc. Interv. 4, 76–82 (2011).

    Article  PubMed  Google Scholar 

  110. Niccoli, G. et al. Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur. Heart J. 36, 1377–1384 (2015).

    Article  PubMed  Google Scholar 

  111. Refaat, H. et al. Optical coherence tomography features of angiographic complex and smooth lesions in acute coronary syndromes. Int. J. Cardiovasc. Imaging 31, 927–934 (2015).

    Article  PubMed  Google Scholar 

  112. Jia, H. et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 62, 1748–1758 (2013).

    Article  PubMed  Google Scholar 

  113. Ong, D. S. et al. Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ. Cardiovasc. Imaging 9, e003929 (2016).

    Article  PubMed  Google Scholar 

  114. Vergallo, R. et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am. Heart J. 167, 59–67 (2014).

    Article  PubMed  Google Scholar 

  115. Wang, L. et al. Variable underlying morphology of culprit plaques associated with ST-elevation myocardial infarction: an optical coherence tomography analysis from the SMART trial. Eur. Heart J. Cardiovasc. Imaging 16, 1381–1389 (2015).

    Article  PubMed  Google Scholar 

  116. Lee, C. W. et al. Differences in intravascular ultrasound and histological findings in culprit coronary plaques between ST-segment elevation myocardial infarction and stable angina. J. Thromb. Thrombolysis 37, 443–449 (2014).

    Article  PubMed  Google Scholar 

  117. Bogale, N. et al. Optical coherence tomography (OCT) evaluation of intermediate coronary lesions in patients with NSTEMI. Cardiovasc. Revasc. Med. 17, 113–118 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.P. and P.L. researched data for the article. All authors contributed substantially to discussion of content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Gerard Pasterkamp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasterkamp, G., den Ruijter, H. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 14, 21–29 (2017). https://doi.org/10.1038/nrcardio.2016.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing