Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure

Key Points

  • The myocardium adapts to continued stress—either physiological or pathological—by modulating gene expression in its constituent cells

  • Methylation of cytosine and post-translational chemical alteration of histones—known as epigenetic modification—render regulatory elements of genes more or less permissive to interaction with the transcriptional machinery

  • These alterations create an epigenetic landscape, or 'epigenome', that is probably specific to a particular physiological or pathological state

  • A plethora of noncoding RNAs, such as microRNAs and long noncoding RNAs, is centrally involved in the regulation of probably all biological processes, including gene expression

  • Epigenetic modifications and noncoding RNAs form an integrated and highly complex regulatory network to control gene expression; heart failure is associated with disruption of this network

  • The reversibility of epigenetic modifications and the relative ease with which noncoding RNAs can be manipulated augur well for the development of much-needed novel pharmaceuticals for treatment of heart failure

Abstract

The regulatory networks governing gene expression in cardiomyocytes are under intense investigation, not least because dysregulation of the gene programme has a fundamental role in the development of a failing myocardium. Epigenetic modifications and functional non-protein-coding RNAs (ncRNAs) are important contributors to this process. The epigenetic modifications that regulate transcription comprise post-translational changes to histones—the proteins around which DNA is wound—as well as modifications to cytosine residues on DNA. The most studied of the histone changes are acetylation and methylation. Histone acetylation is known to be important in cardiac physiology and pathophysiology, but the roles of other histone modifications and of cytosine methylation are only starting to be investigated. Understanding of the role of microRNAs has also seen major advancements, but the function of long ncRNAs is less well defined. Moreover, the connection between ncRNAs and epigenetic modifications is poorly understood in the heart. In this Review, we summarize new insights into how these two layers of gene-expression regulation might be involved in the pathogenesis of cardiac hypertrophy and failure, and how we are only beginning to appreciate the complexity of the interactive network of which they are part.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA and chromatin modifications in gene-expression regulation.
Figure 2: miRNA biogenesis and function.
Figure 3: Mechanisms of action of lncRNAs.

Similar content being viewed by others

References

  1. Lompre, A. M. et al. Myosin isoenzyme redistribution in chronic heart overload. Nature 282, 105–107 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Izumo, S., Nadal-Ginard, B. & Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl Acad. Sci. USA 85, 339–343 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunter, J. J. & Chien, K. R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein, R., Gruenbaum, Y., Pollack, Y., Razin, A. & Cedar, H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc. Natl Acad. Sci. USA 79, 61–65 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hendrich, B. & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haider, S. et al. The landscape of DNA repeat elements in human heart failure. Genome Biol. 13, R90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haas, J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin, S. G., Kadam, S. & Pfeifer, G. P. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38, e125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, X. & Hayes, J. J. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 28, 227–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hodawadekar, S. C. & Marmorstein, R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26, 5528–5540 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Shikama, N. et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22, 5175–5185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei, J. Q. et al. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118, 934–946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yanazume, T. et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol. Cell. Biol. 23, 3593–3606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morimoto, T. et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868–878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, S. et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467–8476 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ago, T. et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133, 978–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hohl, M. et al. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 123, 1359–1370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell Biol. 24, 8374–8385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, X. et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J. Clin. Invest. 116, 675–682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Backs, J. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ha, C. H. et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc. Natl Acad. Sci. USA 107, 15467–15472 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lemon, D. D. et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J. Mol. Cell. Cardiol. 51, 41–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demos-Davies, K. M. et al. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am. J. Physiol. Heart Circ. Physiol. 307, H252–H258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trivedi, C. M. et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat. Med. 13, 324–331 (2007).

    Article  PubMed  Google Scholar 

  38. Montgomery, R. L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Czubryt, M. P., McAnally, J., Fishman, G. I. & Olson, E. N. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc. Natl Acad. Sci. USA 100, 1711–1716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong, Y. et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579–2588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kee, H. J. et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Xie, M. et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129, 1139–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallo, P. et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc. Res. 80, 416–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Cloos, P. A., Christensen, J., Agger, K. & Helin, K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22, 1115–1140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Q. J. et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121, 2447–2456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stein, A. B. et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J. Clin. Invest. 121, 2641–2650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cattaneo, P. et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2014.199.

  51. Nguyen, A. T. et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Mohrmann, L. & Verrijzer, C. P. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681, 59–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bao, Y. & Shen, X. INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618, 18–29 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corona, D. F. & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Marfella, C. G. & Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varga-Weisz, P. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20, 3076–3085 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Han, P., Hang, C. T., Yang, J. & Chang, C. P. Chromatin remodeling in cardiovascular development and physiology. Circ. Res. 108, 378–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mehrotra, A., Joe, B. & de la Serna, I. L. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J. Cell. Physiol. 228, 2337–2342 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yun, M., Wu, J., Workman, J. L. & Li, B. Readers of histone modifications. Cell Res. 21, 564–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spiltoir, J. I. et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 63, 175–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitra, S. A., Mitra, A. P. & Triche, T. J. A central role for long non-coding RNA in cancer. Front. Genet. 3, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mattick, J. S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R. & Mehler, M. F. RNA regulation of epigenetic processes. Bioessays 31, 51–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Condorelli, G., Latronico, M. V. & Cavarretta, E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63, 2177–2187 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Thum, T. & Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 116, 751–762 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Olson, E. N. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl. Med. 6, 239ps3 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Chhabra, R. miRNA and methylation: a multifaceted liaison. Chembiochem 16, 195–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Aavik, E. et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehu437.

  78. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Garzon, R. et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411–6418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roncarati, R. et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63, 920–927 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chavali, V., Tyagi, S. C. & Mishra, P. K. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem. Biophys. Res. Commun. 425, 668–672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sakurai, K. et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 71, 1680–1689 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Mathiyalagan, P. et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res. 42, 790–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Boheler, K. R., Chassagne, C., Martin, X., Wisnewsky, C. & Schwartz, K. Cardiac expressions of alpha- and beta-myosin heavy chains and sarcomeric alpha-actins are regulated through transcriptional mechanisms: results from nuclear run-on assays in isolated rat cardiac nuclei. J. Biol. Chem. 267, 12979–12985 (1992).

    CAS  PubMed  Google Scholar 

  91. Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ounzain, S. et al. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J. Mol. Cell. Cardiol. 76, 55–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Matkovich, S. J., Edwards, J. R., Grossenheider, T. C., de Guzman Strong, C. & Dorn, G. W. 2nd. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl Acad. Sci. USA 111, 12264–12269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36, 353–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Annilo, T., Kepp, K. & Laan, M. Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol. Biol. 10, 81 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Voigtsberger, S., Bartsch, H., Baumann, G. & Luther, H. P. Cell type-specific expression of endogenous cardiac troponin I antisense RNA in the neonatal rat heart. Mol. Cell. Biochem. 324, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Ritter, O., Haase, H., Schulte, H. D., Lange, P. E. & Morano, I. Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J. Cell. Biochem. 74, 551–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Haddad, F. et al. Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes. Am. J. Physiol. Heart Circ. Physiol. 294, H29–H40 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sati, S., Ghosh, S., Jain, V., Scaria, V. & Sengupta, S. Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res. 40, 10018–10031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 2493–2499 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Vilar, J. M. & Saiz, L. DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Curr. Opin. Genet. Dev. 15, 136–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.C. is funded by grants from the European Research Council ('Advanced' grant CARDIOEPIGEN n.294609), and the Italian Ministry of Education, University and Research (MIUR) (n.2010RNXM9C). G.C. is also affiliated with the Institute of Genetic and Biomedical Research (IGBR), National Research Council of Italy, and the Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.

Author information

Authors and Affiliations

Authors

Contributions

C.M.G. researched data for the article. Both authors discussed the content of the article, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Gianluigi Condorelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, C., Condorelli, G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 12, 488–497 (2015). https://doi.org/10.1038/nrcardio.2015.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing