Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of infective endocarditis: pathogen–host interaction and risk states

Key Points

  • Infective endocarditis (IE) is a major challenge for clinicians and a considerable burden for health-care systems

  • In high-income countries over the past 5 decades, patients have been contracting IE at an increasingly old age, and the incidence of health-care-associated staphylococcal IE has risen

  • An improved understanding of the mechanisms of vegetation formation, growth, and embolization will help to combat microbial resistance

  • IE after transfemoral aortic valve implantation in elderly patients can be aggravated by immunosenescence

  • Many factors that increase mortality in patients with IE have been identified, which will help to optimize treatment

  • Mortality risk increases substantially when patients with IE develop septic shock

Abstract

Patients with infective endocarditis (IE) form a heterogeneous group, ranging from those who are successfully treated with no adverse events, to those with severe complications and a high mortality. In this Review, we highlight pathogen–host interactions and the mechanisms underlying various risk factors for patients with IE. A temporal trend in the pattern of IE has been observed in high-income countries within the past 5 decades, with patients contracting IE at an increasingly old age, and a growing incidence of health-care-associated staphylococcal IE. Consequently, prevention strategies should no longer focus on prophylaxis of streptococcal bacteraemia during dental procedures, but instead encourage a more-general approach to reduce the incidence of health-care-associated IE. Much knowledge has been gained about the mechanisms of vegetation formation, growth, and embolization on damaged or inflamed cardiac valves, and on cardiac devices. Improved understanding of these mechanisms will help to combat the increasing problem of antimicrobial resistance. Two mechanisms of IE should increasingly be the focus of future research: the role of immunosenescence in elderly patients with IE, particularly after transcatheter aortic valve implantation, and the mechanisms that trigger septic shock, a condition that leads to a substantial increase in the risk of death in patients with IE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of infective endocarditis.
Figure 2: Mechanisms of infective endocarditis.
Figure 3: Prosthetic aortic valve endocarditis and immunosenescence.
Figure 4: Transition from endocarditis to endocarditis-triggered severe sepsis and septic shock.

Similar content being viewed by others

References

  1. Murdoch, D. R. et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 169, 463–473 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Que, Y. A. & Moreillon, P. Infective endocarditis. Nat. Rev. Cardiol. 8, 322–336 (2011).

    CAS  PubMed  Google Scholar 

  3. Thuny, F., Grisoli, D., Collart, F., Habib, G. & Raoult, D. Management of infective endocarditis: challenges and perspectives. Lancet 379, 965–975 (2012).

    PubMed  Google Scholar 

  4. Moreillon, P. & Que, Y. A. Infective endocarditis. Lancet 363, 139–149 (2004).

    PubMed  Google Scholar 

  5. Kiefer, T. L. & Bashore, T. M. Infective endocarditis: a comprehensive overview. Rev. Cardiovasc. Med. 13, e105–e120 (2012).

    PubMed  Google Scholar 

  6. Hoen, B. & Duval, X. Clinical practice: infective endocarditis. N. Engl. J. Med. 368, 1425–1433 (2013).

    CAS  PubMed  Google Scholar 

  7. Calabrese, F., Carturan, E. & Thiene, G. Cardiac infections: focus on molecular diagnosis. Cardiovasc. Pathol. 19, 171–182 (2010).

    PubMed  Google Scholar 

  8. Yiu, K. H. et al. Emerging trends of community acquired infective endocarditis. Int. J. Cardiol. 121, 119–122 (2007).

    PubMed  Google Scholar 

  9. Yew, H. S. & Murdoch, D. R. Global trends in infective endocarditis epidemiology. Curr. Infect. Dis. Rep. 14, 367–372 (2012).

    PubMed  Google Scholar 

  10. Tleyjeh, I. M. et al. A systematic review of population-based studies of infective endocarditis. Chest 132, 1025–1035 (2007).

    PubMed  Google Scholar 

  11. Hoen, B. et al. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA 288, 75–81 (2002).

    PubMed  Google Scholar 

  12. Correa de Sa, D. D. et al. Epidemiological trends of infective endocarditis: a population-based study in Olmsted County, Minnesota. Mayo Clin. Proc. 85, 422–426 (2010).

    PubMed  Google Scholar 

  13. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    PubMed  Google Scholar 

  14. Nkomo, V. T. Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa. Heart 93, 1510–1519 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Fowler, V. G. Jr et al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 293, 3012–3021 (2005).

    CAS  PubMed  Google Scholar 

  16. Fowler, V. G. Jr et al. Infective endocarditis due to Staphylococcus aureus: 59 prospectively identified cases with follow-up. Clin. Infect. Dis. 28, 106–114 (1999).

    PubMed  Google Scholar 

  17. McDonald, J. R. et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am. J. Med. 118, 759–766 (2005).

    CAS  PubMed  Google Scholar 

  18. Hoen, B. et al. Emergence of endocarditis due to group D streptococci: findings derived from the merged database of the International Collaboration on Endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 24, 12–16 (2005).

    CAS  PubMed  Google Scholar 

  19. Pergola, V. et al. Comparison of clinical and echocardiographic characteristics of Streptococcus bovis endocarditis with that caused by other pathogens. Am. J. Cardiol. 88, 871–875 (2001).

    CAS  PubMed  Google Scholar 

  20. Nakano, K., Nomura, R., Matsumoto, M. & Ooshima, T. Roles of oral bacteria in cardiovascular diseases—from molecular mechanisms to clinical cases: cell-surface structures of novel serotype K Streptococcus mutans strains and their correlation to virulence. J. Pharmacol. Sci. 113, 120–125 (2010).

    CAS  PubMed  Google Scholar 

  21. Fan, J. et al. Ecto-5′-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS ONE 7, e38059 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Callahan, J. E., Munro, C. L. & Kitten, T. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model. PLoS ONE 6, e26403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sy, R. W. & Kritharides, L. Health care exposure and age in infective endocarditis: results of a contemporary population-based profile of 1536 patients in Australia. Eur. Heart J. 31, 1890–1897 (2010).

    PubMed  Google Scholar 

  24. Leone, S. et al. Epidemiology, characteristics, and outcome of infective endocarditis in Italy: the Italian Study on Endocarditis. Infection 40, 527–535 (2012).

    CAS  PubMed  Google Scholar 

  25. Fedeli, U., Schievano, E., Buonfrate, D., Pellizzer, G. & Spolaore, P. Increasing incidence and mortality of infective endocarditis: a population-based study through a record-linkage system. BMC Infect. Dis. 11, 48 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Duval, X. et al. Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J. Am. Coll. Cardiol. 59, 1968–1976 (2012).

    PubMed  Google Scholar 

  27. Opal, S. M. & Pop-Vicas, A. in Mandell, Douglas and Bennett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 279–297 (Churchil Livingston Elsevier, 2010).

    Google Scholar 

  28. Gould, I. M. et al. Management of serious meticillin-resistant Staphylococcus aureus infections: what are the limits? Int. J. Antimicrob. Agents 37, 202–209 (2011).

    CAS  PubMed  Google Scholar 

  29. Gould, I. M., Miro, J. M. & Rybak, M. J. Daptomycin: the role of high-dose and combination therapy for Gram-positive infections. Int. J. Antimicrob. Agents 42, 202–210 (2013).

    CAS  PubMed  Google Scholar 

  30. Vilhena, C. & Bettencourt, A. Daptomycin: a review of properties, clinical use, drug delivery and resistance. Mini Rev. Med. Chem. 12, 202–209 (2012).

    CAS  PubMed  Google Scholar 

  31. Yu, R., Dale, S. E., Yamamura, D., Stankus, V. & Lee, C. Daptomycin-nonsusceptible, vancomycin-intermediate, methicillin-resistant Staphylococcus aureus endocarditis. Can. J. Infect. Dis. Med. Microbiol. 23, e48–e50 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Twele, L. et al. Methicillin-resistant Staphylococcus aureus endocarditis and de novo development of daptomycin resistance during therapy. Can. J. Infect. Dis. Med. Microbiol. 21, 89–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Habib, G. et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC): endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur. Heart J. 30, 2369–2413 (2009).

    PubMed  Google Scholar 

  34. Wilson, W. et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 116, 1736–1754 (2007).

    PubMed  Google Scholar 

  35. Pasquali, S. K. et al. Trends in endocarditis hospitalizations at US children's hospitals: impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. Am. Heart J. 163, 894–899 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Mohindra, R. K. A case of insufficient evidence equipoise: the NICE guidance on antibiotic prophylaxis for the prevention of infective endocarditis. J. Med. Ethics 36, 567–570 (2010).

    CAS  PubMed  Google Scholar 

  37. Thornhill, M. H. et al. Impact of the NICE guideline recommending cessation of antibiotic prophylaxis for prevention of infective endocarditis: before and after study. BMJ 342, d2392 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. Donlan, R. M. & Costerton, J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sendi, P. & Proctor, R. A. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 17, 54–58 (2009).

    CAS  PubMed  Google Scholar 

  40. Fraunholz, M. & Sinha, B. Intracellular Staphylococcus aureus: live-in and let die. Front. Cell. Infect. Microbiol. 2, 43 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Karchmer, A. W. in Braunwald's Heart Disease (eds Zipes, D. P., Libby, P., Bonow, R. O. & Braunwald, E.) 1633–1656 (Elsevier Saunders, 2005).

    Google Scholar 

  42. Moreillon, P., Que, Y. A. & Bayer, A. S. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect. Dis. Clin. North Am. 16, 297–318 (2002).

    PubMed  Google Scholar 

  43. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  44. Fowler, V. G. J., Scheld, W. M. & Bayer, A. S. in Mandell, Douglas and Benett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 1067–1112 (Churchill Livingstone Elsevier, 2010).

    Google Scholar 

  45. Moss, R. & Munt, B. Injection drug use and right sided endocarditis. Heart 89, 577–581 (2003).

    PubMed  PubMed Central  Google Scholar 

  46. Crawford, I. & Russell, C. Comparative adhesion of seven species of streptococci isolated from the blood of patients with sub-acute bacterial endocarditis to fibrin-platelet clots in vitro. J. Appl. Bacteriol. 60, 127–133 (1986).

    CAS  PubMed  Google Scholar 

  47. Veltrop, M. H., Bancsi, M. J., Bertina, R. M. & Thompson, J. Role of monocytes in experimental Staphylococcus aureus endocarditis. Infect. Immun. 68, 4818–4821 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bancsi, M. J., Veltrop, M. H., Bertina, R. M. & Thompson, J. Role of phagocytosis in activation of the coagulation system in Streptococcus sanguis endocarditis. Infect. Immun. 64, 5166–5170 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sinha, B. et al. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect. Immun. 68, 6871–6878 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheung, A. L., Koomey, J. M., Butler, C. A., Projan, S. J. & Fischetti, V. A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl Acad. Sci. USA 89, 6462–6466 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Novick, R. P. et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967–3975 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McKinsey, D. S., Ratts, T. E. & Bisno, A. L. Underlying cardiac lesions in adults with infective endocarditis: the changing spectrum. Am. J. Med. 82, 681–688 (1987).

    CAS  PubMed  Google Scholar 

  53. Stehbens, W. E., Delahunt, B. & Zuccollo, J. M. The histopathology of endocardial sclerosis. Cardiovasc. Pathol. 9, 161–173 (2000).

    CAS  PubMed  Google Scholar 

  54. Hemler, M. E., Elices, M. J., Parker, C. & Takada, Y. Structure of the integrin VLA-4 and its cell–cell and cell–matrix adhesion functions. Immunol. Rev. 114, 45–65 (1990).

    CAS  PubMed  Google Scholar 

  55. Cox, D., Kerrigan, S. W. & Watson, S. P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J. Thromb. Haemost. 9, 1097–1107 (2011).

    CAS  PubMed  Google Scholar 

  56. Brennan, M. P. et al. Elucidating the role of Staphylococcus epidermidis serine–aspartate repeat protein G in platelet activation. J. Thromb. Haemost. 7, 1364–1372 (2009).

    CAS  PubMed  Google Scholar 

  57. Foster, T. J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    CAS  PubMed  Google Scholar 

  58. Chavakis, T., Wiechmann, K., Preissner, K. T. & Herrmann, M. Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb. Haemost. 94, 278–285 (2005).

    CAS  PubMed  Google Scholar 

  59. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol. Microbiol. 16, 895–907 (1995).

    CAS  PubMed  Google Scholar 

  60. Sinha, B. et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1 . Cell. Microbiol. 1, 101–117 (1999).

    CAS  PubMed  Google Scholar 

  61. Kerrigan, S. W. et al. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler. Thromb. Vasc. Biol. 28, 335–340 (2008).

    CAS  PubMed  Google Scholar 

  62. Que, Y. A. et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med. 201, 1627–1635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Heying, R., van de Gevel, J., Que, Y. A., Moreillon, P. & Beekhuizen, H. Fibronectin-binding proteins and clumping factor A in Staphylococcus aureus experimental endocarditis: FnBPA is sufficient to activate human endothelial cells. Thromb. Haemost. 97, 617–626 (2007).

    CAS  PubMed  Google Scholar 

  64. Bertling, A. et al. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler. Thromb. Vasc. Biol. 32, 1979–1990 (2012).

    CAS  PubMed  Google Scholar 

  65. Vanassche, T. et al. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb. Haemost. 107, 1107–1121 (2012).

    CAS  PubMed  Google Scholar 

  66. Munita, J. M., Arias, C. A. & Murray, B. E. Enterococcal endocarditis: can we win the war? Curr. Infect. Dis. Rep. 14, 339–349 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Herzberg, M. C. et al. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect. Immun. 60, 4809–4818 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bayer, A. S. et al. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect. Immun. 63, 3634–3641 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fowler, V. G. Jr et al. In vitro resistance to thrombin-induced platelet microbicidal protein in isolates of Staphylococcus aureus from endocarditis patients correlates with an intravascular device source. J. Infect. Dis. 182, 1251–1254 (2000).

    CAS  PubMed  Google Scholar 

  70. Koo, S. P., Bayer, A. S., Kagan, B. L. & Yeaman, M. R. Membrane permeabilization by thrombin-induced platelet microbicidal protein 1 is modulated by transmembrane voltage polarity and magnitude. Infect. Immun. 67, 2475–2481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeaman, M. R., Tang, Y. Q., Shen, A. J., Bayer, A. S. & Selsted, M. E. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect. Immun. 65, 1023–1031 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fitzgerald, J. R., Foster, T. J. & Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 4, 445–457 (2006).

    CAS  PubMed  Google Scholar 

  73. Herrmann, M., Lai, Q. J., Albrecht, R. M., Mosher, D. F. & Proctor, R. A. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J. Infect. Dis. 167, 312–322 (1993).

    CAS  PubMed  Google Scholar 

  74. Niemann, S. et al. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation 110, 193–200 (2004).

    CAS  PubMed  Google Scholar 

  75. Loughman, A. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 57, 804–818 (2005).

    CAS  PubMed  Google Scholar 

  76. Fitzgerald, J. R. et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol. Microbiol. 59, 212–230 (2006).

    CAS  PubMed  Google Scholar 

  77. Hartleib, J. et al. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 96, 2149–2156 (2000).

    CAS  PubMed  Google Scholar 

  78. Miajlovic, H. et al. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156, 920–928 (2010).

    CAS  PubMed  Google Scholar 

  79. Menzies, B. E. The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr. Opin. Infect. Dis. 16, 225–229 (2003).

    CAS  PubMed  Google Scholar 

  80. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    CAS  PubMed  Google Scholar 

  81. Haslinger-Loffler, B. et al. Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cell. Microbiol. 7, 1087–1097 (2005).

    PubMed  Google Scholar 

  82. Grundmeier, M. et al. Staphylococcal strains vary greatly in their ability to induce an inflammatory response in endothelial cells. J. Infect. Dis. 201, 871–880 (2010).

    PubMed  Google Scholar 

  83. Fernández Guerrero, M. L., Álvarez, B., Manzarbeitia, F. & Renedo, G. Infective endocarditis at autopsy: a review of pathologic manifestations and clinical correlates. Medicine (Baltimore) 91, 152–164 (2012).

    Google Scholar 

  84. Hocke, A. C. et al. Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin. Histochem. Cell Biol. 126, 305–316 (2006).

    CAS  PubMed  Google Scholar 

  85. Boyer, L. et al. Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. J. Cell. Biol. 173, 809–819 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chirouze, C. et al. Streptococcus bovis/Streptococcus equinus complex fecal carriage, colorectal carcinoma, and infective endocarditis: a new appraisal of a complex connection. Eur. J. Clin. Microbiol. Infect. Dis. 32, 1171–1176 (2013).

    CAS  PubMed  Google Scholar 

  87. Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin. Infect. Dis. 53, 870–878 (2011).

    CAS  PubMed  Google Scholar 

  88. Boleij, A. et al. Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer. J. Infect. Dis. 203, 1101–1109 (2011).

    CAS  PubMed  Google Scholar 

  89. Boleij, A. & Tjalsma, H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect. Dis. 13, 719–724 (2013).

    PubMed  Google Scholar 

  90. Tuchscherr, L. et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J. Infect. Dis. 202, 1031–1040 (2010).

    PubMed  Google Scholar 

  91. Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  92. Proctor, R. A., van Langevelde, P., Kristjansson, M., Maslow, J. N. & Arbeit, R. D. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin. Infect. Dis. 20, 95–102 (1995).

    CAS  PubMed  Google Scholar 

  93. Tuchscherr, L. et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol. Med. 3, 129–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    CAS  PubMed  Google Scholar 

  95. Cheung, A. L., Bayer, A. S., Zhang, G., Gresham, H. & Xiong, Y. Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40, 1–9 (2004).

    CAS  PubMed  Google Scholar 

  96. Million, M. et al. Immunoglobulin G anticardiolipin antibodies and progression to Q fever endocarditis. Clin. Infect. Dis. 57, 57–64 (2013).

    CAS  PubMed  Google Scholar 

  97. García-Cabrera, E. et al. Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation 127, 2272–2284 (2013).

    PubMed  Google Scholar 

  98. Snygg-Martin, U. et al. Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers. Clin. Infect. Dis. 47, 23–30 (2008).

    PubMed  Google Scholar 

  99. Heiro, M. et al. Neurologic manifestations of infective endocarditis: a 17-year experience in a teaching hospital in Finland. Arch. Intern. Med. 160, 2781–2787 (2000).

    CAS  PubMed  Google Scholar 

  100. Duval, X. et al. Effect of early cerebral magnetic resonance imaging on clinical decisions in infective endocarditis: a prospective study. Ann. Intern. Med. 152, 497–504 (2010).

    PubMed  Google Scholar 

  101. Cooper, H. A. et al. Subclinical brain embolization in left-sided infective endocarditis: results from the evaluation by MRI of the brains of patients with left-sided intracardiac solid masses (EMBOLISM) pilot study. Circulation 120, 585–591 (2009).

    PubMed  Google Scholar 

  102. Sonneville, R. et al. Neurologic complications and outcomes of infective endocarditis in critically ill patients: the ENDOcardite en REAnimation prospective multicenter study. Crit. Care Med. 39, 1474–1481 (2011).

    PubMed  Google Scholar 

  103. Wang, A. et al. Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA 297, 1354–1361 (2007).

    CAS  PubMed  Google Scholar 

  104. Knoll, B. M., Baddour, L. M. & Wilson, W. R. in Mandell, Douglas and Benett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 1113–1126 (Churchill Livingstone Elsevier, 2010).

    Google Scholar 

  105. Saby, L. et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J. Am. Coll. Cardiol. 61, 2374–2382 (2013).

    PubMed  Google Scholar 

  106. Lalani, T. et al. In-hospital and 1-year mortality in patients undergoing early surgery for prosthetic valve endocarditis. JAMA Intern. Med. 173, 1495–1504 (2013).

    PubMed  Google Scholar 

  107. Agarwal, A., Singh, K. P. & Jain, A. Medical significance and management of staphylococcal biofilm. FEMS Immunol. Med. Microbiol. 58, 147–160 (2010).

    CAS  PubMed  Google Scholar 

  108. Gander, S. Bacterial biofilms: resistance to antimicrobial agents. J. Antimicrob. Chemother. 37, 1047–1050 (1996).

    CAS  PubMed  Google Scholar 

  109. Herrmann, M. et al. Left ventricular assist device infection is associated with increased mortality but is not a contraindication to transplantation. Circulation 95, 814–817 (1997).

    CAS  PubMed  Google Scholar 

  110. Sohail, M. R., Wilson, W. R. & Baddour, L. M. in Mandell, Douglas and Benett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 1127–1142 (Churchill Livingstone Elsevier, 2010).

    Google Scholar 

  111. Sohail, M. R., Sultan, O. W. & Raza, S. S. Contemporary management of cardiovascular implantable electronic device infections. Expert Rev. Anti Infect. Ther. 8, 831–839 (2010).

    PubMed  Google Scholar 

  112. Tarakji, K. G. & Wilkoff, B. L. Management of cardiac implantable electronic device infections: the challenges of understanding the scope of the problem and its associated mortality. Expert Rev. Cardiovasc. Ther. 11, 607–616 (2013).

    CAS  PubMed  Google Scholar 

  113. Baddour, L. M., Cha, Y. M. & Wilson, W. R. Clinical practice: infections of cardiovascular implantable electronic devices. N. Engl. J. Med. 367, 842–849 (2012).

    CAS  PubMed  Google Scholar 

  114. Athan, E. et al. Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices. JAMA 307, 1727–1735 (2012).

    CAS  PubMed  Google Scholar 

  115. Greenspon, A. J. et al. Timing of the most recent device procedure influences the clinical outcome of lead-associated endocarditis results of the MEDIC (Multicenter Electrophysiologic Device Infection Cohort). J. Am. Coll. Cardiol. 59, 681–687 (2012).

    PubMed  Google Scholar 

  116. de Bie, M. K. et al. Cardiac device infections are associated with a significant mortality risk. Heart Rhythm 9, 494–498 (2012).

    PubMed  Google Scholar 

  117. Greenspon, A. J. et al. 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. J. Am. Coll. Cardiol. 58, 1001–1006 (2011).

    PubMed  Google Scholar 

  118. Jan, E. et al. Microbiologic characteristics and in vitro susceptibility to antimicrobials in a large population of patients with cardiovascular implantable electronic device infection. J. Cardiovasc. Electrophysiol. 23, 375–381 (2012).

    PubMed  Google Scholar 

  119. Sohail, M. R. et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 49, 1851–1859 (2007).

    PubMed  Google Scholar 

  120. Li, J. S. et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 30, 633–638 (2000).

    CAS  PubMed  Google Scholar 

  121. Sarrazin, J. F. et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J. Am. Coll. Cardiol. 59, 1616–1625 (2012).

    PubMed  Google Scholar 

  122. Wilkoff, B. L. et al. Transvenous lead extraction: Heart Rhythm Society expert consensus on facilities, training, indications, and patient management: this document was endorsed by the American Heart Association (AHA). Heart Rhythm 6, 1085–1104 (2009).

    PubMed  Google Scholar 

  123. Baddour, L. M. Cardiac device infection—or not. Circulation 121, 1686–1687 (2010).

    PubMed  Google Scholar 

  124. Hannan, M. M. et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J. Heart Lung Transplant. 30, 375–384 (2011).

    PubMed  Google Scholar 

  125. Spelman, D. & Esmore, D. Ventricular assist device infections. Curr. Infect. Dis. Rep. 14, 359–366 (2012).

    PubMed  Google Scholar 

  126. Gordon, R. J. et al. Prospective, multicenter study of ventricular assist device infections. Circulation 127, 691–702 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Gogas, B. D. et al. Left ventricular assist device vegetation: “cure” without device explantation. Hellenic J. Cardiol. 51, 549–551 (2010).

    PubMed  Google Scholar 

  128. Simon, D. et al. Left ventricular assist device-related infection: treatment and outcome. Clin. Infect. Dis. 40, 1108–1115 (2005).

    PubMed  Google Scholar 

  129. Holland, S. M. & Gallin, J. I. Evaluation of the patient with recurrent bacterial infections. Annu. Rev. Med. 49, 185–199 (1998).

    CAS  PubMed  Google Scholar 

  130. Benito, N. et al. Health care-associated native valve endocarditis: importance of non-nosocomial acquisition. Ann. Intern. Med. 150, 586–594 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. David, M. Z., Boyle-Vavra, S., Zychowski, D. L. & Daum, R. S. Methicillin-susceptible Staphylococcus aureus as a predominantly healthcare-associated pathogen: a possible reversal of roles? PLoS ONE 6, e18217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Finkelstein, R. et al. Incidence and risk factors for endocarditis among patients with health care-associated Staphylococcus aureus bacteraemia. Scand. J. Infect. Dis. 44, 934–940 (2012).

    PubMed  Google Scholar 

  133. Bouza, E. et al. Infective endocarditis—a prospective study at the end of the twentieth century: new predisposing conditions, new etiologic agents, and still a high mortality. Medicine (Baltimore) 80, 298–307 (2001).

    CAS  Google Scholar 

  134. Gouello, J. P. et al. Nosocomial endocarditis in the intensive care unit: an analysis of 22 cases. Crit. Care Med. 28, 377–382 (2000).

    CAS  PubMed  Google Scholar 

  135. Cabell, C. H. et al. Changing patient characteristics and the effect on mortality in endocarditis. Arch. Intern. Med. 162, 90–94 (2002).

    PubMed  Google Scholar 

  136. Abbott, K. C. & Agodoa, L. Y. Hospitalizations for bacterial endocarditis after initiation of chronic dialysis in the United States. Nephron 91, 203–209 (2002).

    PubMed  Google Scholar 

  137. Rekik, S. et al. Infective endocarditis in hemodialysis patients: clinical features, echocardiographic data and outcome: a 10-year descriptive analysis. Clin. Exp. Nephrol. 13, 350–354 (2009).

    PubMed  Google Scholar 

  138. Robinson, D. L., Fowler, V. G., Sexton, D. J., Corey, R. G. & Conlon, P. J. Bacterial endocarditis in hemodialysis patients. Am. J. Kidney Dis. 30, 521–524 (1997).

    CAS  PubMed  Google Scholar 

  139. Fitzgerald, S. F. et al. A 12-year review of Staphylococcus aureus bloodstream infections in haemodialysis patients: more work to be done. J. Hosp. Infect. 79, 218–221 (2011).

    CAS  PubMed  Google Scholar 

  140. Steckelberg, J. M., Melton, L. J. 3rd, Ilstrup, D. M., Rouse, M. S. & Wilson, W. R. Influence of referral bias on the apparent clinical spectrum of infective endocarditis. Am. J. Med. 88, 582–588 (1990).

    CAS  PubMed  Google Scholar 

  141. Mathew, J. et al. Clinical features, site of involvement, bacteriologic findings, and outcome of infective endocarditis in intravenous drug users. Arch. Intern. Med. 155, 1641–1648 (1995).

    CAS  PubMed  Google Scholar 

  142. Graves, M. K. & Soto, L. Left-sided endocarditis in parenteral drug abusers: recent experience at a large community hospital. South. Med. J. 85, 378–380 (1992).

    CAS  PubMed  Google Scholar 

  143. Miró, J. M., del Río, A. & Mestres, C. A. Infective endocarditis in intravenous drug abusers and HIV-1 infected patients. Infect. Dis. Clin. North Am. 16, 273–295 (2002).

    PubMed  Google Scholar 

  144. Shekar, R., Rice, T. W., Zierdt, C. H. & Kallick, C. A. Outbreak of endocarditis caused by Pseudomonas aeruginosa serotype O11 among pentazocine and tripelennamine abusers in Chicago. J. Infect. Dis. 151, 203–208 (1985).

    CAS  PubMed  Google Scholar 

  145. Saydain, G., Singh, J., Dalal, B., Yoo, W. & Levine, D. P. Outcome of patients with injection drug use-associated endocarditis admitted to an intensive care unit. J. Crit. Care 25, 248–253 (2010).

    PubMed  Google Scholar 

  146. Losa, J. E. et al. Infective endocarditis not related to intravenous drug abuse in HIV-1-infected patients: report of eight cases and review of the literature. Clin. Microbiol. Infect. 9, 45–54 (2003).

    CAS  PubMed  Google Scholar 

  147. Wilson, L. E., Thomas, D. L., Astemborski, J., Freedman, T. L. & Vlahov, D. Prospective study of infective endocarditis among injection drug users. J. Infect. Dis. 185, 1761–1766 (2002).

    PubMed  Google Scholar 

  148. Ribera, E. et al. Influence of human immunodeficiency virus 1 infection and degree of immunosuppression in the clinical characteristics and outcome of infective endocarditis in intravenous drug users. Arch. Intern. Med. 158, 2043–2050 (1998).

    CAS  PubMed  Google Scholar 

  149. Cecchi, E. et al. Infective endocarditis in drug addicts: role of HIV infection and the diagnostic accuracy of Duke criteria. J. Cardiovasc. Med. (Hagerstown) 8, 169–175 (2007).

    Google Scholar 

  150. Gebo, K. A., Burkey, M. D., Lucas, G. M., Moore, R. D. & Wilson, L. E. Incidence of, risk factors for, clinical presentation, and 1-year outcomes of infective endocarditis in an urban HIV cohort. J. Acquir. Immune Defic. Syndr. 43, 426–432 (2006).

    PubMed  Google Scholar 

  151. Martino, P. et al. Catheter-related right-sided endocarditis in bone marrow transplant recipients. Rev. Infect. Dis. 12, 250–257 (1990).

    CAS  PubMed  Google Scholar 

  152. Kuruvilla, J. et al. Characteristics and outcome of patients developing endocarditis following hematopoietic stem cell transplantation. Bone Marrow Transplant. 34, 969–973 (2004).

    CAS  PubMed  Google Scholar 

  153. Paterson, D. L., Dominguez, E. A., Chang, F. Y., Snydman, D. R. & Singh, N. Infective endocarditis in solid organ transplant recipients. Clin. Infect. Dis. 26, 689–694 (1998).

    CAS  PubMed  Google Scholar 

  154. Dummer, J. S. & Singh, N. in Mandell, Douglas and Benett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 3829–3850 (Churchill Livingstone Elsevier, 2010).

    Google Scholar 

  155. Crossley, K. B. & Peterson, P. K. in Mandell, Douglas and Benett's Priciples and Practice of Infectious Diseases (eds Mandell, G. L., Bennett, J. E. & Dolin, R.) 3857–3864 (Churchill Livingstone Elsevier, 2010).

    Google Scholar 

  156. Shaw, A. C., Joshi, S., Greenwood, H., Panda, A. & Lord, J. M. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ginaldi, L., Loreto, M. F., Corsi, M. P., Modesti, M. & De Martinis, M. Immunosenescence and infectious diseases. Microbes Infect. 3, 851–857 (2001).

    CAS  PubMed  Google Scholar 

  158. Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Delahaye, F., Rial, M. O., de Gevigney, G., Ecochard, R. & Delaye, J. A critical appraisal of the quality of the management of infective endocarditis. J. Am. Coll. Cardiol. 33, 788–793 (1999).

    CAS  PubMed  Google Scholar 

  160. Iung, B. et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24, 1231–1243 (2003).

    PubMed  Google Scholar 

  161. Selton-Suty, C. et al. Clinical and bacteriological characteristics of infective endocarditis in the elderly. Heart 77, 260–263 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Werner, G. S. et al. Infective endocarditis in the elderly in the era of transesophageal echocardiography: clinical features and prognosis compared with younger patients. Am. J. Med. 100, 90–97 (1996).

    CAS  PubMed  Google Scholar 

  163. Di Salvo, G. et al. Endocarditis in the elderly: clinical, echocardiographic, and prognostic features. Eur. Heart J. 24, 1576–1583 (2003).

    PubMed  Google Scholar 

  164. Barrau, K. et al. Causative organisms of infective endocarditis according to host status. Clin. Microbiol. Infect. 10, 302–308 (2004).

    CAS  PubMed  Google Scholar 

  165. Terpenning, M. S., Buggy, B. P. & Kauffman, C. A. Infective endocarditis: clinical features in young and elderly patients. Am. J. Med. 83, 626–634 (1987).

    CAS  PubMed  Google Scholar 

  166. Solana, R. et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol. 24, 331–341 (2012).

    CAS  PubMed  Google Scholar 

  167. High, K. P., Akbar, A. N. & Nikolich-Zugich, J. Translational research in immune senescence: assessing the relevance of current models. Semin. Immunol. 24, 373–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Dorshkind, K., Montecino-Rodriguez, E. & Signer, R. A. The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 9, 57–62 (2009).

    CAS  PubMed  Google Scholar 

  169. Dorshkind, K. & Swain, S. Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr. Opin. Immunol. 21, 404–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mann, D. L. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ. Res. 108, 1133–1145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lewthwaite, P., Parsons, H. K., Bates, C. J., McKendrick, M. W. & Dockrell, D. H. Group G streptococcal bacteraemia: an opportunistic infection associated with immune senescence. Scand. J. Infect. Dis. 34, 83–87 (2002).

    PubMed  Google Scholar 

  172. Santarpino, G., Fischlein, T. & Pfeiffer, S. Prosthetic valve endocarditis 6 months after transcatheter aortic valve implantation [Italian]. G. Ital. Cardiol. (Rome) 14, 138–140 (2013).

    Google Scholar 

  173. Albu, C., Swaans, M. J. & Ten Berg, J. M. With the back against the wall: TAVI in a patient with endocarditis. Catheter. Cardiovasc. Interv. 82, E595–E597 (2013).

    PubMed  Google Scholar 

  174. Head, S. J., Dewey, T. M. & Mack, M. J. Fungal endocarditis after transfemoral aortic valve implantation. Catheter. Cardiovasc. Interv. 78, 1017–1019 (2011).

    PubMed  Google Scholar 

  175. Loh, P. H., Bundgaard, H. & Søndergaard, L. Infective endocarditis following transcatheter aortic valve replacement: diagnostic and management challenges. Catheter. Cardiovasc. Interv. 81, 623–627 (2013).

    PubMed  Google Scholar 

  176. Castiglioni, A., Pozzoli, A., Maisano, F. & Alfieri, O. Endocarditis after transfemoral aortic valve implantation in a patient with Osler–Weber–Rendu syndrome. Interact. Cardiovasc. Thorac. Surg. 15, 553–554 (2012).

    PubMed  PubMed Central  Google Scholar 

  177. Doss, M., Buhr, E. B., Martens, S., Moritz, A. & Zierer, A. Transcatheter-based aortic valve implantations at midterm: what happened to our initial patients? Ann. Thorac. Surg. 94, 1400–1406 (2012).

    PubMed  Google Scholar 

  178. Puls, M. et al. Prosthetic valve endocarditis after transcatheter aortic valve implantation: the incidence in a single-centre cohort and reflections on clinical, echocardiographic and prognostic features. EuroIntervention 8, 1407–1418 (2013).

    PubMed  Google Scholar 

  179. Dweck, M. R., Boon, N. A. & Newby, D. E. Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60, 1854–1863 (2012).

    PubMed  Google Scholar 

  180. Rittirsch, D., Flierl, M. A. & Ward, P. A. Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776–787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Werdan, K. et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin. Res. Cardiol. 100, 661–668 (2011).

    PubMed  Google Scholar 

  182. Olmos, C. et al. Contemporary epidemiology and prognosis of septic shock in infective endocarditis. Eur. Heart J. 34, 1999–2006 (2013).

    CAS  PubMed  Google Scholar 

  183. Cuculi, F. et al. Serum procalcitonin has the potential to identify Staphylococcus aureus endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 27, 1145–1149 (2008).

    CAS  PubMed  Google Scholar 

  184. Mueller, C., Huber, P., Laifer, G., Mueller, B. & Perruchoud, A. P. Procalcitonin and the early diagnosis of infective endocarditis. Circulation 109, 1707–1710 (2004).

    CAS  PubMed  Google Scholar 

  185. Kocazeybek, B., Kucukoglu, S. & Oner, Y. A. Procalcitonin and C-reactive protein in infective endocarditis: correlation with etiology and prognosis. Chemotherapy 49, 76–84 (2003).

    CAS  PubMed  Google Scholar 

  186. Watkin, R. W. et al. Pro-inflammatory cytokines IL6, TNF-α, IL1β, procalcitonin, lipopolysaccharide binding protein and C-reactive protein in infective endocarditis. J. Infect. 55, 220–225 (2007).

    CAS  PubMed  Google Scholar 

  187. Jereb, M., Kotar, T., Jurca, T. & Lejko Zupanc, T. Usefulness of procalcitonin for diagnosis of infective endocarditis. Intern. Emerg. Med. 4, 221–226 (2009).

    PubMed  Google Scholar 

  188. Povoa, P. & Salluh, J. I. Biomarker-guided antibiotic therapy in adult critically ill patients: a critical review. Ann. Intensive Care 2, 32 (2012).

    PubMed  PubMed Central  Google Scholar 

  189. Dellinger, R. P. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med 41, 580–637 (2013).

    PubMed  Google Scholar 

  190. Thuny, F. et al. Excess mortality and morbidity in patients surviving infective endocarditis. Am. Heart J. 164, 94–101 (2012).

    PubMed  Google Scholar 

  191. Kang, D. H. et al. Early surgery versus conventional treatment for infective endocarditis. N. Engl. J. Med. 366, 2466–2473 (2012).

    CAS  PubMed  Google Scholar 

  192. Tornos, P. et al. Infective endocarditis in Europe: lessons from the Euro Heart Survey. Heart 91, 571–575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Edwards, M. B., Ratnatunga, C. P., Dore, C. J. & Taylor, K. M. Thirty-day mortality and long-term survival following surgery for prosthetic endocarditis: a study from the UK Heart Valve Registry. Eur. J. Cardiothorac. Surg. 14, 156–164 (1998).

    CAS  PubMed  Google Scholar 

  194. Delahaye, F. et al. In-hospital mortality of infective endocarditis: prognostic factors and evolution over an 8-year period. Scand. J. Infect. Dis. 39, 849–857 (2007).

    PubMed  Google Scholar 

  195. Gálvez-Acebal, J. et al. Prognostic factors in left-sided endocarditis: results from the Andalusian multicenter cohort. BMC Infect. Dis. 10, 17 (2010).

    PubMed  PubMed Central  Google Scholar 

  196. Mourvillier, B. et al. Infective endocarditis in the intensive care unit: clinical spectrum and prognostic factors in 228 consecutive patients. Intensive Care Med. 30, 2046–2052 (2004).

    PubMed  Google Scholar 

  197. Gelsomino, S. et al. Emergency surgery for native mitral valve endocarditis: the impact of septic and cardiogenic shock. Ann. Thorac. Surg. 93, 1469–1476 (2012).

    PubMed  Google Scholar 

  198. Musci, M. et al. Predictors of early mortality in patients with active infective native or prosthetic aortic root endocarditis undergoing homograft aortic root replacement. Clin. Res. Cardiol. 98, 443–450 (2009).

    PubMed  Google Scholar 

  199. Witchitz, S., Wolff, M., Chastang, C., Regnier, B. & Vachon, F. Prognostic factors of prosthetic valve endocarditis: apropos of 122 cases [French]. Arch. Mal. Coeur Vaiss. 89, 671–677 (1996).

    CAS  PubMed  Google Scholar 

  200. Knaus, W. A. et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9, 591–597 (1981).

    CAS  PubMed  Google Scholar 

  201. Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: on behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22, 707–710 (1996).

    CAS  PubMed  Google Scholar 

  202. Lopez, J. et al. Prognostic role of persistent positive blood cultures after initiation of antibiotic therapy in left-sided infective endocarditis. Eur. Heart J. 34, 1749–1754 (2013).

    CAS  PubMed  Google Scholar 

  203. Prendergast, B. D. & Tornos, P. Surgery for infective endocarditis: who and when? Circulation 121, 1141–1152 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

B. Löffler was supported by the grant SFB 656/A10.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to discussions of its content, and wrote the manuscript. K. Werdan, S. Dietz, and U. Müller-Werdan reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Karl Werdan.

Ethics declarations

Competing interests

K. Werdan declared that he is or has been a consultant for: Abbot, Baxter, Bayer, Biotest, Datascope, Novartis, and Servier; he has received honoraria for speaking from: Abbott, Biogen, Biotest, Boehringer Ingelheim, Boston Scientific, Datascope, Maquet, MSD, Novartis, Roche, and Servier; and has received grants or research support from: Bayer, Biotest, Datascope, Novartis, Roche, and Servier. U. Müller-Werdan declares that she has received honoraria for speaking from: Assistenz, Bayer, Berlin Chemie, GbR Salzatal, German Cardiac Society, Klinikum Magdeburg, Medizinische Hochschule Hannover, Roche Diagnostics, Serumwerke Bernburg, Servier, Socreatec Oberursel, Universität Erlangen; and has received grants or research support from: Biotest, Novartis, and Servier. S. Dietz, B. Löffler, S. Niemann, H. Bushnaq, R. E. Silber, and G. Peters declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werdan, K., Dietz, S., Löffler, B. et al. Mechanisms of infective endocarditis: pathogen–host interaction and risk states. Nat Rev Cardiol 11, 35–50 (2014). https://doi.org/10.1038/nrcardio.2013.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing