Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interventional cardiology in adults with congenital heart disease

Key Points

  • The population of adults with congenital heart disease is increasing owing to the improved survival of paediatric patients with these conditions

  • Physicians with expertise in performing interventions in patients with congenital structural lesions are needed

  • Treatment of patients with congenital and acquired structural heart disease requires specialized catheterization laboratories, the integration of imaging modalities, and a collaborative multidisciplinary model for patient care and decision-making

  • With continued advancement in interventional technology and techniques, the use of minimally invasive and percutaneous interventions in this population of patients is expected to grow

Abstract

Interventional cardiac catheterization has become an integral component of the management of adults with congenital heart disease. The origins of this approach come from the paediatric interventional experience, although techniques and indications for interventional cardiac catheterization in adults are now being developed for use in the burgeoning field of adult congenital heart disease. Progress in the application and acceptance of interventional cardiac catheterization in this setting has been swift, and the pace is quickening. This Review provides a broad overview of some of the most common procedures used in the treatment of adults with congenital heart lesions, with an emphasis on new tools that have revolutionized the field. Specifically, we discuss interventions that can be broadly classified into the following groups: techniques for closing shunt lesions, valvular interventions, methods for achieving patency of vascular obstructions, and selected additional interventions applicable to some complex lesions. We emphasize the need for a thorough understanding of the anatomy of the lesion, its natural or unnatural history, and indications for intervention before the procedure takes place. Such procedures must be performed in centres where the operators are knowledgeable of the lesions being addressed, with full surgical, anaesthetic, nursing and imaging support.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Percutaneous closure of ostium secundum defects in adult patients.
Figure 2: Percutaneous closure of ventricular septal defects in adult patients.
Figure 3: Percutaneous closure of the patent arterial duct in adult patients.
Figure 4: Balloon dilatation in adult patients with pulmonary valve stenosis.
Figure 5: Balloon dilatation in adult patients with aortic stenosis.
Figure 6: Percutaneous pulmonary valve implantation in adults with congenital heart disease.
Figure 7: Presentation and percutaneous treatment of aortic coarctation in adults with congenital heart disease: angiographic examples of arch coarctation.
Figure 8: Simple and complex presentations of pulmonary artery stenosis in adults with congenital heart disease.
Figure 9: Occlusion of venovenous collaterals in adult patients with a Fontan circulation.
Figure 10: Percutaneous repair of atrial baffle leaks or stenosis in adult patients with surgically repaired dextrotransposition of the great arteries.

Similar content being viewed by others

References

  1. Miller, G. W. King of Hearts: the True Story of the Maverick who Pioneered Open-Heart Surgery (Times Books, 2000).

    Google Scholar 

  2. Stuart, A. G. Changing lesion demographics of the adult with congenital heart disease: an emerging population with complex needs. Future Cardiol. 8, 305–313 (2012).

    Article  PubMed  Google Scholar 

  3. Warnes, C. A. et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation 118, e714–e833 (2008).

    PubMed  Google Scholar 

  4. Silversides, C. K. et al. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: executive summary. Can. J. Cardiol. 26, 143–150 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baumgartner, H. et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur. Heart J. 31, 2915–2957 (2010).

    Article  PubMed  Google Scholar 

  6. Meadows, J. & Landzberg, M. J. Advances in transcatheter interventions in adults with congenital heart disease. Prog. Cardiovasc. Dis. 53, 265–273 (2011).

    Article  PubMed  Google Scholar 

  7. Singh, H. S., Osten, M. & Horlick, E. Future horizons for catheter-based interventions in adult congenital and structural heart disease. Future Cardiol. 8, 203–213 (2012).

    Article  PubMed  Google Scholar 

  8. Chen, S. J., Hansgen, A. R. & Carroll, J. D. The future cardiac catheterization laboratory. Cardiol. Clin. 27, 541–548 (2009).

    Article  PubMed  Google Scholar 

  9. Lindsey, J. B. & Hillis, L. D. Clinical update: atrial septal defect in adults. Lancet 369, 1244–1246 (2007).

    Article  PubMed  Google Scholar 

  10. Amin, Z. Transcatheter closure of secundum atrial septal defects. Catheter Cardiovasc. Interv. 68, 778–787 (2006).

    Article  PubMed  Google Scholar 

  11. King, T. D., Thompson, S. L., Steiner, C. & Mills, N. L. Secundum atrial septal defect. Nonoperative closure during cardiac catheterization. JAMA 235, 2506–2509 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Kotowycz, M. A. et al. Long-term outcomes after surgical versus transcatheter closure of atrial septal defects in adults. JACC Cardiovasc. Interv. 6, 497–503 (2013).

    Article  PubMed  Google Scholar 

  13. Gupta, S. K. et al. Trans-catheter closure of atrial septal defect: Balloon sizing or no Balloon sizing—single centre experience. Ann. Pediatr. Cardiol. 4, 28–33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Spence, M. S. & Qureshi, S. A. Complications of transcatheter closure of atrial septal defects. Heart 91, 1512–1514 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yared, K. et al. Echocardiographic assessment of percutaneous patent foramen ovale and atrial septal defect closure complications. Circ. Cardiovasc. Imaging 2, 141–149 (2009).

    Article  PubMed  Google Scholar 

  16. Moore, J. et al. Transcatheter device closure of atrial septal defects: a safety review. JACC Cardiovasc. Interv. 6, 433–442 (2013).

    Article  PubMed  Google Scholar 

  17. Crawford, G. B., Brindis, R. G., Krucoff, M. W., Mansalis, B. P. & Carroll, J. D. Percutaneous atrial septal occluder devices and cardiac erosion: a review of the literature. Catheter Cardiovasc. Interv. 80, 157–167 (2012).

    Article  PubMed  Google Scholar 

  18. Martin, G. R. et al. The IMPACT registry: IMproving Pediatric and Adult Congenital Treatments. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13, 20–25 (2010).

    Article  PubMed  Google Scholar 

  19. Papadopoulos, G. et al. Venous and paradoxical air embolism in the sitting position. A prospective study with transoesophageal echocardiography. Acta Neurochir (Wien) 126, 140–143 (1994).

    Article  CAS  Google Scholar 

  20. Schwerzmann, M. et al. Atrial septal defect closure in a patient with “irreversible” pulmonary hypertensive arteriopathy. Int. J. Cardiol. 110, 104–107 (2006).

    Article  PubMed  Google Scholar 

  21. Schneider, H. E., Jux, C., Kriebel, T. & Paul, T. Fate of a modified fenestration of atrial septal occluder device after transcatheter closure of atrial septal defects in elderly patients. J. Interv. Cardiol. 24, 485–490 (2011).

    Article  PubMed  Google Scholar 

  22. Silversides, C. K. et al. Predictors of atrial arrhythmias after device closure of secundum type atrial septal defects in adults. Am. J. Cardiol. 101, 683–687 (2008).

    Article  PubMed  Google Scholar 

  23. Kutty, S. et al. Long-term (5- to 20-year) outcomes after transcatheter or surgical treatment of hemodynamically significant isolated secundum atrial septal defect. Am. J. Cardiol. 109, 1348–1352 (2012).

    Article  PubMed  Google Scholar 

  24. Ewert, P., Berger, F., Nagdyman, N., Kretschmar, O. & Lange, P. E. Acute left heart failure after interventional occlusion of an atrial septal defect [German]. Z. Kardiol. 90, 362–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hagen, P. T., Scholz, D. G. & Edwards, W. D. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin. Proc. 59, 17–20 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Calvert, P. A., Rana, B. S., Kydd, A. C. & Shapiro, L. M. Patent foramen ovale: anatomy, outcomes, and closure. Nat. Rev. Cardiol. 8, 148–160 (2011).

    Article  PubMed  Google Scholar 

  27. Rana, B. S., Thomas, M. R., Calvert, P. A., Monaghan, M. J. & Hildick-Smith, D. Echocardiographic evaluation of patent foramen ovale prior to device closure. JACC Cardiovasc. Imaging 3, 749–760 (2010).

    Article  PubMed  Google Scholar 

  28. Rigatelli, G. et al. ICE-guided patent foramen ovale (PFO) closure with lastest-generation devices: the ideal strategy for PFO-related migraine? J. Cardiovasc. Med. (Hagerstown) 8, 633–635 (2007).

    Article  Google Scholar 

  29. Roger, V. L. et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123, e18–e209 (2011).

    Article  PubMed  Google Scholar 

  30. Kolominsky-Rabas, P. L., Weber, M., Gefeller, O., Neundoerfer, B. & Heuschmann, P. U. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32, 2735–2740 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sacco, R. L. et al. Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann. Neurol. 25, 382–390 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Tobis, J. & Shenoda, M. Percutaneous treatment of patent foramen ovale and atrial septal defects. J. Am. Coll. Cardiol. 60, 1722–1732 (2012).

    Article  PubMed  Google Scholar 

  33. Lechat, P. et al. Prevalence of patent foramen ovale in patients with stroke. N. Engl. J. Med. 318, 1148–1152 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Mas, J. L. et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N. Engl. J. Med. 345, 1740–1746 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Mas, J. L. Patent foramen ovale, atrial septal aneurysm and ischaemic stroke in young adults. Eur. Heart J. 15, 446–449 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Ramani, G. V., Kligerman, S. & Lehr, E. Multimodality imaging of thrombus in transit crossing a patent foramen ovale. J. Am. Coll. Cardiol. 59, e19 (2012).

    Article  PubMed  Google Scholar 

  37. Taaffe, M. et al. Comparison of three patent foramen ovale closure devices in a randomized trial (Amplatzer versus CardioSEAL-STARflex versus Helex occluder). Am. J. Cardiol. 101, 1353–1358 (2008).

    Article  PubMed  Google Scholar 

  38. Wahl, A. et al. Long-term propensity score-matched comparison of percutaneous closure of patent foramen ovale with medical treatment after paradoxical embolism. Circulation 125, 803–812 (2012).

    Article  PubMed  Google Scholar 

  39. Carroll, J. D. et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N. Engl. J. Med. 386, 1092–1100 (2013).

    Article  CAS  Google Scholar 

  40. Khairy, P., O'Donnell, C. P. & Landzberg, M. J. Transcatheter closure versus medical therapy of patent foramen ovale and presumed paradoxical thromboemboli: a systematic review. Ann. Intern. Med. 139, 753–760 (2003).

    Article  PubMed  Google Scholar 

  41. Furlan, A. J. et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N. Engl. J. Med. 366, 991–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Meier, B. et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N. Engl. J. Med. 368, 1083–1091 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Billinger, M. et al. Patent foramen ovale closure in recreational divers: effect on decompression illness and ischaemic brain lesions during long-term follow-up. Heart 97, 1932–1937 (2011).

    Article  PubMed  Google Scholar 

  44. Landzberg, M. J. et al. Orthodeoxia-platypnea due to intracardiac shunting--relief with transcatheter double umbrella closure. Cathet. Cardiovasc. Diagn. 36, 247–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Rigatelli, G. et al. Incidence of extracerebral paradoxical embolisms in patients with intracardiac shunts. Cardiovasc. Revasc. Med. 8, 248–250 (2007).

    Article  PubMed  Google Scholar 

  46. Dowson, A. et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation 117, 1397–1404 (2008).

    Article  PubMed  Google Scholar 

  47. Minette, M. S. & Sahn, D. J. Ventricular septal defects. Circulation 114, 2190–2197 (2006).

    Article  PubMed  Google Scholar 

  48. Ooshima, A., Fukushige, J. & Ueda, K. Incidence of structural cardiac disorders in neonates: an evaluation by color Doppler echocardiography and the results of a 1-year follow-up. Cardiology 86, 402–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Lock, J. E., Block, P. C., McKay, R. G., Baim, D. S. & Keane, J. F. Transcatheter closure of ventricular septal defects. Circulation 78, 361–368 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Janorkar, S., Goh, T. & Wilkinson, J. Transcatheter closure of ventricular septal defects using the Rashkind device: initial experience. Catheter Cardiovasc. Interv. 46, 43–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Kalra, G. S., Verma, P. K., Singh, S. & Arora, R. Transcatheter closure of ventricular septal defect using detachable steel coil. Heart 82, 395–396 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Knauth, A. L. et al. Transcatheter device closure of congenital and postoperative residual ventricular septal defects. Circulation 110, 501–507 (2004).

    Article  PubMed  Google Scholar 

  53. Latiff, H. A., Alwi, M., Kandhavel, G., Samion, H. & Zambahari, R. Transcatheter closure of multiple muscular ventricular septal defects using Gianturco coils. Ann. Thorac. Surg. 68, 1400–1401 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Sideris, E. B. et al. Occlusion of congenital ventricular septal defects by the buttoned device. “Buttoned device” Clinical Trials International Register. Heart 77, 276–279 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holzer, R. et al. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U. S. registry. J. Am. Coll. Cardiol. 43, 1257–1263 (2004).

    Article  PubMed  Google Scholar 

  56. Al-Kashkari, W., Balan, P., Kavinsky, C. J., Cao, Q. L. & Hijazi, Z. M. Percutaneous device closure of congenital and iatrogenic ventricular septal defects in adult patients. Catheter Cardiovasc. Interv. 77, 260–267 (2011).

    Article  PubMed  Google Scholar 

  57. Bacha, E. A. et al. Multicenter experience with perventricular device closure of muscular ventricular septal defects. Pediatr. Cardiol. 26, 169–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Carminati, M. et al. Transcatheter closure of congenital ventricular septal defects: results of the European Registry. Eur. Heart J. 28, 2361–2368 (2007).

    Article  PubMed  Google Scholar 

  59. Szkutnik, M., Qureshi, S. A., Kusa, J., Rosenthal, E. & Bialkowski, J. Use of the Amplatzer muscular ventricular septal defect occluder for closure of perimembranous ventricular septal defects. Heart 93, 355–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Koneti, N. R. et al. Transcatheter retrograde closure of perimembranous ventricular septal defects in children with the Amplatzer duct occluder II device. J. Am. Coll. Cardiol. 60, 2421–2422 (2012).

    Article  PubMed  Google Scholar 

  61. Chungsomprasong, P., Durongpisitkul, K., Vijarnsorn, C., Soongswang, J. & Le, T. P. The results of transcatheter closure of VSD using Amplatzer® device and Nit Occlud® Lê coil. Catheter Cardiovasc. Interv. 78, 1032–1040 (2011).

    Article  PubMed  Google Scholar 

  62. Velasco-Sanchez, D., Tzikas, A., Ibrahim, R. & Miro, J. Transcatheter closure of perimembranous ventricular septal defects: Initial human experience with the Amplatzer® membranous VSD occluder 2. Catheter Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.24361.

  63. El Said, H. G., Bratincsak, A., Gordon, B. M. & Moore, J. W. Closure of perimembranous ventricular septal defects with aneurysmal tissue using the amplazter duct occluder I: Lessons learned and medium term follow up. Catheter Cardiovasc. Interv. 80, 895–903 (2012).

    Article  PubMed  Google Scholar 

  64. Schneider, D. J. The patent ductus arteriosus in term infants, children, and adults. Semin. Perinatol. 36, 146–153 (2012).

    Article  PubMed  Google Scholar 

  65. Masura, J. et al. Catheter closure of moderate- to large-sized patent ductus arteriosus using the new Amplatzer duct occluder: immediate and short-term results. J. Am. Coll. Cardiol. 31, 878–882 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, J. K. et al. A strategic approach to transcatheter closure of patent ductus: Gianturco coils for small-to-moderate ductus and Amplatzer duct occluder for large ductus. Int. J. Cardiol. 106, 10–15 (2006).

    Article  PubMed  Google Scholar 

  67. Donti, A. et al. Transcatheter closure of the patent ductus arteriosus with new-generation devices: comparative data and follow-up results. Ital. Heart J. 3, 122–127 (2002).

    PubMed  Google Scholar 

  68. Pass, R. H., Hijazi, Z., Hsu, D. T., Lewis, V. & Hellenbrand, W. E. Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: initial and one-year results. J. Am. Coll. Cardiol. 44, 513–519 (2004).

    Article  PubMed  Google Scholar 

  69. Rao, P. S. Percutaneous balloon pulmonary valvuloplasty: state of the art. Catheter Cardiovasc. Interv. 69, 747–763 (2007).

    Article  PubMed  Google Scholar 

  70. Hayes, C. J. et al. Second natural history study of congenital heart defects. Results of treatment of patients with pulmonary valvar stenosis. Circulation 87, I28–I37 (1993).

    CAS  PubMed  Google Scholar 

  71. Chen, C. R. et al. Percutaneous balloon valvuloplasty for pulmonic stenosis in adolescents and adults. N. Engl. J. Med. 335, 21–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Fawzy, M. E. et al. Long-term results (up to 17 years) of pulmonary balloon valvuloplasty in adults and its effects on concomitant severe infundibular stenosis and tricuspid regurgitation. Am. Heart J. 153, 433–438 (2007).

    Article  PubMed  Google Scholar 

  73. Kaul, U. A. et al. Long-term results after balloon pulmonary valvuloplasty in adults. Am. Heart J. 126, 1152–1155 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Sadr-Ameli, M. A., Sheikholeslami, F., Firoozi, I. & Azarnik, H. Late results of balloon pulmonary valvuloplasty in adults. Am. J. Cardiol. 82, 398–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Stanger, P. et al. Balloon pulmonary valvuloplasty: results of the Valvuloplasty and Angioplasty of Congenital Anomalies Registry. Am. J. Cardiol. 65, 775–783 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Thapar, M. K. & Rao, P. S. Significance of infundibular obstruction following balloon valvuloplasty for valvar pulmonic stenosis. Am. Heart J. 118, 99–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Siu, S. C. & Silversides, C. K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55, 2789–2800 (2010).

    Article  PubMed  Google Scholar 

  78. Tzemos, N. et al. Outcomes in adults with bicuspid aortic valves. JAMA 300, 1317–1325 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Lababidi, Z., Wu, J. R. & Walls, J. T. Percutaneous balloon aortic valvuloplasty: results in 23 patients. Am. J. Cardiol. 53, 194–197 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. McKay, R. G. et al. Assessment of left ventricular and aortic valve function after aortic balloon valvuloplasty in adult patients with critical aortic stenosis. Circulation 75, 192–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Reich, O. et al. Long term results of percutaneous balloon valvoplasty of congenital aortic stenosis: independent predictors of outcome. Heart 90, 70–76 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Friedman, K. G. et al. Left ventricular remodeling and improvement in diastolic function after balloon aortic valvuloplasty for congenital aortic stenosis. Circ. Cardiovasc. Interv. 5, 549–554 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fratz, S. et al. Aortic valvuloplasty in pediatric patients substantially postpones the need for aortic valve surgery: a single-center experience of 188 patients after up to 17.5 years of follow-up. Circulation 117, 1201–1206 (2008).

    Article  PubMed  Google Scholar 

  84. Sandhu, S. K., Lloyd, T. R., Crowley, D. C. & Beekman, R. H. Effectiveness of balloon valvuloplasty in the young adult with congenital aortic stenosis. Cathet. Cardiovasc. Diagn. 36, 122–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Litvack, F., Jakubowski, A. T., Buchbinder, N. A. & Eigler, N. Lack of sustained clinical improvement in an elderly population after percutaneous aortic valvuloplasty. Am. J. Cardiol. 62, 270–275 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Beekman, R. H. et al. Comparison of single and double balloon valvuloplasty in children with aortic stenosis. J. Am. Coll. Cardiol. 12, 480–485 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Karagoz, T. et al. Congenital aortic stenosis: a novel technique for ventricular pacing during valvuloplasty. Catheter Cardiovasc. Interv. 72, 527–530 (2008).

    Article  PubMed  Google Scholar 

  88. Brown, D. W., Dipilato, A. E., Chong, E. C., Lock, J. E. & McElhinney, D. B. Aortic valve reinterventions after balloon aortic valvuloplasty for congenital aortic stenosis intermediate and late follow-up. J. Am. Coll. Cardiol. 56, 1740–1749 (2010).

    Article  PubMed  Google Scholar 

  89. Maskatia, S. A. et al. Twenty-five year experience with balloon aortic valvuloplasty for congenital aortic stenosis. Am. J. Cardiol. 108, 1024–1028 (2011).

    Article  PubMed  Google Scholar 

  90. Khambadkone, S. & Bonhoeffer, P. Nonsurgical pulmonary valve replacement: why, when, and how? Catheter Cardiovasc. Interv. 62, 401–408 (2004).

    Article  PubMed  Google Scholar 

  91. Bonhoeffer, P. et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356, 1403–1405 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Boone, R. H. et al. Transcatheter pulmonary valve implantation using the Edwards SAPIEN transcatheter heart valve. Catheter Cardiovasc. Interv. 75, 286–294 (2010).

    Article  PubMed  Google Scholar 

  93. Lee, C. et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J. Am. Coll. Cardiol. 60, 1005–1014 (2012).

    Article  PubMed  Google Scholar 

  94. Asoh, K. et al. Percutaneous pulmonary valve implantation within bioprosthetic valves. Eur. Heart J. 31, 1404–1409 (2010).

    Article  PubMed  Google Scholar 

  95. Roberts, P. A. et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J. Am. Coll. Cardiol. 58, 117–122 (2011).

    Article  PubMed  Google Scholar 

  96. McElhinney, D. B. et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 122, 507–516 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lurz, P. et al. Early versus late functional outcome after successful percutaneous pulmonary valve implantation: are the acute effects of altered right ventricular loading all we can expect? J. Am. Coll. Cardiol. 57, 724–731 (2011).

    Article  PubMed  Google Scholar 

  98. Lurz, P. et al. Effect of altering pathologic right ventricular loading conditions by percutaneous pulmonary valve implantation on exercise capacity. Am. J. Cardiol. 105, 721–726 (2010).

    Article  PubMed  Google Scholar 

  99. Vezmar, M. et al. Percutaneous pulmonary valve implantation in the young 2-year follow-up. JACC Cardiovasc. Interv. 3, 439–448 (2010).

    Article  PubMed  Google Scholar 

  100. Lee, C. et al. Surgical pulmonary valve insertion—when, how, and why. Cardiol. Young 22, 702–707 (2012).

    Article  PubMed  Google Scholar 

  101. Singh, H. S., Benson, L., Majekodunmi, T., Osten, M. & Horlick, E. Personalized Medicine for Valvular Heart Disease First in Man: Percutaneous Pulmonary Valve-in-Valve Implantation using 29 mm Edwards Sapien Valve. Presented at the 24th annual Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium.

  102. Boudjemline, Y., Agnoletti, G., Bonnet, D., Sidi, D. & Bonhoeffer, P. Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: an experimental study. J. Am. Coll. Cardiol. 43, 1082–1087 (2004).

    Article  PubMed  Google Scholar 

  103. Rao, P. S. Coarctation of the aorta. Curr. Cardiol. Rep. 7, 425–434 (2005).

    Article  PubMed  Google Scholar 

  104. Chessa, M. et al. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. Eur. Heart J. 26, 2728–2732 (2005).

    Article  PubMed  Google Scholar 

  105. Shah, L., Hijazi, Z., Sandhu, S., Joseph, A. & Cao, Q. L. Use of endovascular stents for the treatment of coarctation of the aorta in children and adults: immediate and midterm results. J. Invasive Cardiol. 17, 614–618 (2005).

    PubMed  Google Scholar 

  106. Krasemann, T., Bano, M., Rosenthal, E. & Qureshi, S. A. Results of stent implantation for native and recurrent coarctation of the aorta-follow-up of up to 13 years. Catheter Cardiovasc. Interv. 78, 405–412 (2011).

    PubMed  Google Scholar 

  107. San Norberto Garcia, E. M. et al. Open surgical repair and endovascular treatment in adult coarctation of the aorta. Ann. Vasc. Surg. 24, 1068–1074 (2010).

    Article  PubMed  Google Scholar 

  108. Rodés-Cabau, J. et al. Comparison of surgical and transcatheter treatment for native coarctation of the aorta in patients ≥1 year old. The Quebec Native Coarctation of the Aorta study. Am. Heart J. 154, 186–192 (2007).

    Article  PubMed  Google Scholar 

  109. Holzer, R. et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry--Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc. Interv. 76, 553–563 (2010).

    Article  PubMed  Google Scholar 

  110. Forbes, T. J. et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J. Am. Coll. Cardiol. 58, 2664–2674 (2011).

    Article  PubMed  Google Scholar 

  111. Golden, A. B. & Hellenbrand, W. E. Coarctation of the aorta: stenting in children and adults. Catheter Cardiovasc. Interv. 69, 289–299 (2007).

    Article  PubMed  Google Scholar 

  112. Bruckheimer, E., Dagan, T., Amir, G. & Birk, E. Covered Cheatham-Platinum stents for serial dilation of severe native aortic coarctation. Catheter Cardiovasc. Interv. 74, 117–123 (2009).

    Article  PubMed  Google Scholar 

  113. Tanous, D., Collins, N., Dehghani, P., Benson, L. N. & Horlick, E. M. Covered stents in the management of coarctation of the aorta in the adult: initial results and 1-year angiographic and hemodynamic follow-up. Int. J. Cardiol. 140, 287–295 (2010).

    Article  PubMed  Google Scholar 

  114. Butera, G., Heles, M., MacDonald, S. T. & Carminati, M. Aortic coarctation complicated by wall aneurysm: the role of covered stents. Catheter Cardiovasc. Interv. 78, 926–932 (2011).

    Article  PubMed  Google Scholar 

  115. Ringel, R. E., Gauvreau, K., Moses, H. & Jenkins, K. J. Coarctation of the Aorta Stent Trial (COAST): study design and rationale. Am. Heart J. 164, 7–13 (2012).

    Article  PubMed  Google Scholar 

  116. Goldstein, B. H. et al. Percutaneous balloon-expandable covered stent implantation for treatment of traumatic aortic injury in children and adolescents. Am. J. Cardiol. 110, 1541–1545 (2012).

    Article  PubMed  Google Scholar 

  117. Prieto, L. R. & Latson, L. A. in Moss and Adams' Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult 7th edn (eds Moss, A. J. & Allen, H. D.) 849–859 (Lippincott Williams & Wilkins, 2008).

    Google Scholar 

  118. Thomson, J. D. & Qureshi, S. A. Transcatheter rehabilitation of pulmonary arteries. Expert Rev. Cardiovasc. Ther. 9, 1459–1467 (2011).

    Article  PubMed  Google Scholar 

  119. Gentles, T. L., Lock, J. E. & Perry, S. B. High pressure balloon angioplasty for branch pulmonary artery stenosis: early experience. J. Am. Coll. Cardiol. 22, 867–872 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Bergersen, L. et al. Randomized trial of cutting balloon compared with high-pressure angioplasty for the treatment of resistant pulmonary artery stenosis. Circulation 124, 2388–2396 (2011).

    Article  PubMed  Google Scholar 

  121. Krisnanda, C., Menahem, S. & Lane, G. K. Intravascular stent implantation for the management of pulmonary artery stenosis. Heart Lung Circ. 22, 56–70 (2013).

    Article  PubMed  Google Scholar 

  122. Law, M. A. et al. Pulmonary artery stents: long-term follow-up. Catheter Cardiovasc. Interv. 75, 757–764 (2010).

    Article  PubMed  Google Scholar 

  123. McMahon, C. J. et al. Redilation of endovascular stents in congenital heart disease: factors implicated in the development of restenosis and neointimal proliferation. J. Am. Coll. Cardiol. 38, 521–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Stapleton, G. E. et al. Simultaneous stent implantation to treat bifurcation stenoses in the pulmonary arteries: Initial results and long-term follow up. Catheter Cardiovasc. Interv. 73, 557–563 (2009).

    Article  PubMed  Google Scholar 

  125. Zartner, P., Cesnjevar, R., Singer, H. & Weyand, M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc. Interv. 66, 590–594 (2005).

    Article  PubMed  Google Scholar 

  126. Mitropoulos, F. A. et al. Intraoperative pulmonary artery stenting: an alternative technique for the management of pulmonary artery stenosis. Ann. Thorac. Surg. 84, 1338–1341; discussion 1342 (2007).

    Article  PubMed  Google Scholar 

  127. Maglione, J., Bergersen, L., Lock, J. E. & McElhinney, D. B. Ultra-high-pressure balloon angioplasty for treatment of resistant stenoses within or adjacent to previously implanted pulmonary arterial stents. Circ. Cardiovasc. Interv. 2, 52–58 (2009).

    Article  PubMed  Google Scholar 

  128. Magee, A. G. et al. Systemic venous collateral development after the bidirectional cavopulmonary anastomosis. Prevalence and predictors. J. Am. Coll. Cardiol. 32, 502–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. McElhinney, D. B., Reddy, V. M., Hanley, F. L. & Moore, P. Systemic venous collateral channels causing desaturation after bidirectional cavopulmonary anastomosis: evaluation and management. J. Am. Coll. Cardiol. 30, 817–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Gatzoulis, M. A. et al. Increasing cyanosis early after cavopulmonary connection caused by abnormal systemic venous channels. Br. Heart J. 73, 182–186 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heinemann, M. et al. Incidence and impact of systemic venous collateral development after Glenn and Fontan procedures. Thorac. Cardiovasc. Surg. 49, 172–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Sugiyama, H., Yoo, S. J., Williams, W. & Benson, L. N. Characterization and treatment of systemic venous to pulmonary venous collaterals seen after the Fontan operation. Cardiol. Young 13, 424–430 (2003).

    Article  PubMed  Google Scholar 

  133. Uemura, H. et al. Redirection of hepatic venous drainage after total cavopulmonary shunt in left isomerism. Ann. Thorac. Surg. 68, 1731–1735 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Weber, H. S. Incidence and predictors for the development of significant supradiaphragmatic decompressing venous collateral channels following creation of Fontan physiology. Cardiol. Young 11, 289–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. du Plessis, A. J. et al. Cerebrovascular accidents following the Fontan operation. Pediatr. Neurol. 12, 230–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Seltzer, S., Aboulhosn, J. & Levi, D. S. Use of interlock fibered detachable coils for occlusion of collaterals, coronary artery fistulae, and patent ductus arteriosus. Catheter Cardiovasc. Interv. 74, 770–776 (2009).

    Article  PubMed  Google Scholar 

  137. Sonomura, T. et al. Usefulness of the Guglielmi detachable coil for embolization of a systemic venous collateral after Fontan operation: A case report. World J. Radiol. 4, 418–420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Warnes, C. A. Transposition of the great arteries. Circulation 114, 2699–2709 (2006).

    Article  PubMed  Google Scholar 

  139. Patel, S., Shah, D., Chintala, K. & Karpawich, P. P. Atrial baffle problems following the Mustard operation in children and young adults with dextro-transposition of the great arteries: the need for improved clinical detection in the current era. Congenit. Heart Dis. 6, 466–474 (2011).

    Article  PubMed  Google Scholar 

  140. Singh, H. S. et al. Complex interventions in the adult with congenital heart disease: Percutaneous solutions for venous baffles, coronary artery fistulas, and ruptured sinus of valsalva aneurysms. Interventional Cardiology Clinics 2, 153–172 (2013).

    Article  PubMed  Google Scholar 

  141. Asgar, A. W., Miro, J. & Ibrahim, R. Recanalization of systemic venous baffles by radiofrequency perforation and stent implantation. Catheter Cardiovasc. Interv. 70, 591–594 (2007).

    Article  PubMed  Google Scholar 

  142. Ebeid, M. R. et al. Catheter management of occluded superior baffle after atrial switch procedures for transposition of great vessels. Am. J. Cardiol. 95, 782–786 (2005).

    Article  PubMed  Google Scholar 

  143. Brown, S. C. et al. Self expandable stents for relief of venous baffle obstruction after the Mustard operation. Heart 79, 230–233 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bu'Lock, F. A. et al. Balloon expandable stents for systemic venous pathway stenosis late after Mustard's operation. Heart 79, 225–229 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hill, K. D., Fudge, J. C. & Rhodes, J. F. Complete resolution of systemic venous baffle obstruction and baffle leak using the Gore Excluder covered stent in two patients with transposition of the great arteries and prior Mustard procedure. Catheter Cardiovasc. Interv. 76, 878–881 (2010).

    Article  PubMed  Google Scholar 

  146. Daehnert, I., Hennig, B., Wiener, M. & Rotzsch, C. Interventions in leaks and obstructions of the interatrial baffle late after Mustard and Senning correction for transposition of the great arteries. Catheter Cardiovasc. Interv. 66, 400–407 (2005).

    Article  PubMed  Google Scholar 

  147. Michel-Behnke, I., Hagel, K. J., Bauer, J. & Schranz, D. Superior caval venous syndrome after atrial switch procedure: relief of complete venous obstruction by gradual angioplasty and placement of stents. Cardiol. Young 8, 443–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Ward, C. J., Mullins, C. E., Nihill, M. R., Grifka, R. G. & Vick, G. W., 3rd. Use of intravascular stents in systemic venous and systemic venous baffle obstructions. Short-term follow-up results. Circulation 91, 2948–2954 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. S. Singh researched the data for the article. H. S. Singh, E. Horlick, M. Osten and L. N. Benson contributed to discussion of the article content and writing the manuscript. H. S. Singh, E. Horlick and M. Osten undertook review and editing of the manuscript before submission.

Corresponding author

Correspondence to Lee N. Benson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Horlick, E., Osten, M. et al. Interventional cardiology in adults with congenital heart disease. Nat Rev Cardiol 10, 662–678 (2013). https://doi.org/10.1038/nrcardio.2013.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing