Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Assessing cancer risks of low-dose radiation

Abstract

Ionizing radiation is considered a non-threshold carcinogen. However, quantifying the risk of the more commonly encountered low and/or protracted radiation exposures remains problematic and subject to uncertainty. Therefore, a major challenge lies in providing a sound mechanistic understanding of low-dose radiation carcinogenesis. This Perspective article considers whether differences exist between the effects mediated by high- and low-dose radiation exposure and how this affects the assessment of low-dose cancer risk.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible relationships between radiation dose and cancer risk.
Figure 2: DNA damage response signalling.

References

  1. Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Preston, D. L. et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat. Res. 162, 377–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Pierce, D. A. & Preston, D. L. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat. Res. 154, 178–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. & Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and non-cancer disease mortality: 1950–1997. Radiat. Res. 160, 381–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cardis, E. et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res. 167, 396–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Wakeford, R. Occupational exposure, epidemiology and compensation. Occ. Med. 56, 173–179 (2006).

    Article  Google Scholar 

  7. Muirhead, C. R. et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br. J. Cancer 100, 206–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Darby, S. et al. Residential radon and lung cancer – detailed results of a collaborative analysis of individual data on 7,148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiological studies in Europe. Scand. J. Work Environ. Health 32, 1–83 (2006).

    Article  PubMed  Google Scholar 

  9. NRC. Health Effects of Exposure to Radon (BEIR VI) (National Academic Press, Washington DC, USA, 1999).

  10. Brenner, D. J. et al. Cancer risks attributable to low doses of ionising radiation: assessing what we really know. Proc. Natl Acad. Sci. USA 100, 13761–13766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wakeford, R. & Little, M. P. Risk coefficients for childhood leukaemia after intra uterine irradiation: a review. Int. J. Radiat. Biol. 79, 293–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. NRC. Health Risks from Exposure to Low Levels of IIonising Radiation (BEIR VII phase 2) (National Academic Press, Washington DC, USA, 1999).

  13. ICRP. Publication 103: Recommendations of the ICRP (Elsevier, USA, 2007).

  14. Brenner, D. J. & Hall, E. J. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. COMARE Twelfth report. The impact of personally initiated x-ray computed tomography scanning for the health assessment of asymptomatic individuals (Health Protection Agency, Chilton, UK, 2007).

  16. Hidajat, N., Wust, P., Felix, R. & Schröder, R. J. Radiation exposure to patient and staff in hepatic chemoembolization: risk estimation of cancer and deterministic effects. Cardiovasc. Intervent. Radiol. 29, 791–796 (2006).

    Article  PubMed  Google Scholar 

  17. Papageorgiou, E. et al. Comparison of patient doses in interventional radiology procedures performed in two large hospitals in Greece. Radiat. Prot. Dosimetry 124, 97–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Siiskonen, T., Tapiovaara, M., Kosunen, A., Lehtinen, M. & Vartiainen, E. Occupational radiation doses in interventional radiology: simulations. Radiat. Prot. Dosimetry 129, 36–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. NCRP. Report 136: Evaluation of the Linear-Non Threshold Dose-Response Model for Ionising Radiation (NCRP, Bethesda, USA, 2001).

  20. ICRP. Publication 99: Low-dose Extrapolation of Radiation Related Cancer Risk. (Elsevier, USA,2006).

  21. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Feinendegen, L. Evidence for beneficial low level radiation effects and radiation hormesis. Br. J. Radiol. 78, 3–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Tubiana, M., Aurengo, A., Averbeck, D. & Masse, R. Recent reports on the effect of low doses of ionising radiation and its dose-effect relationship. Radiat. Environ. Biophys. 44, 245–251 (2000).

    Article  CAS  Google Scholar 

  24. Little, J. B. & Lauriston, S. Taylor lecture: non targeted effects of radiation: implications for low-dose exposures. Health Phys. 91, 416–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Feinendegen, L. E., Bond, V. P., Sondhaus, C. A. & Muehlensiepen, H. Radiation effects induced by low doses in complex tissue and their relation to cellular adaptive responses. Mutat. Res. 358, 199–205 (1996).

    Article  PubMed  Google Scholar 

  26. Wallace, S. S. DNA damages processed by base excision repair: biological consequences. Int. J. Radiat. Biol. 66, 579–589 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Klungland, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300–13305 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pouget, J. P. et al. Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat. Res. 157, 589–595 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet. 36, 331–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462, 247–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Rothkamm, K. & Löbrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl Acad. Sci. USA 100, 5057–5062 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Löbrich, M. et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc. Natl Acad. Sci. USA 102, 8984–8989 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Rübe, C. E. et al. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin. Cancer Res. 14, 6546–6555 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Nikjoo, H., O'Neill, P., Terrissol, M. & Goodhead, D. T. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat. Environ. Biophys. 38, 31–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Goodhead, D. T. Initial events in the cellular effects of ionising radiations: clustered damage in DNA. Int. J. Radiat. Biol. 65, 7–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Dianov, G. L., O'Neill, P. & Goodhead, D. T. Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23, 745–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Harrison, L., Hatahet, Z. & Wallace, S. S. In vitro repair of synthetic ionising radiation-induced multiply damaged DNA sites. J. Mol. Biol. 290, 667–684 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Pearson, C. G., Shikazono, N., Thacker, J. & O'Neill, P. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site. Nucleic Acids Res. 32, 263–270 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett, P. V., Cintron, N. S., Gros, L., Laval, J. & Sutherland, B. M. Are endogenous clustered DNA damages induced in human cells? Free Radic. Biol. Med. 37, 488–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Short, S. C., Bourne, S., Martindale, C., Woodcock, M. & Jackson, S. P. DNA damage responses at low radiation doses. Radiat. Res. 164, 292–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bonner, W. M. Phenomena leading to cell survival values which deviate from linear-quadratic models. Mutat. Res. 568, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, X. & Gabriel, A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 163, 843–856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabatier, L., Ricoul, M., Pottier, G. & Murnane, J. P. The loss of a single telomere can result in instability of multiple chromosomes in a human tumor cell line. Mol. Cancer Res. 3, 139–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Marchetti, F., Coleman, M. A., Jones, I. M. & Wyrobek, A. J. Candidate protein biodosimeters of human exposure to ionising radiation. Int. J. Radiat. Biol. 82, 605–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Taylor, A. M. & Byrd, P. J. Molecular pathology of ataxia telangiectasia. J. Clin. Pathol. 58, 1009–1015 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki, K. et al. Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionising radiation. Radiat. Res. 165, 499–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Marková, E., Schultz, N. & Belyaev, I. Y. Kinetics and dose-response of residual 53BP1/γ-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol. 83, 319–329 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Rouse, J. & Jackson, S. P. Interfaces between the detection, signalling and repair of DNA damage. Science 297, 547–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Bauer, G. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int. J. Radiat. Biol. 83, 873–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Wykes, S. M. et al. Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks. Radiat. Res. 165, 516–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Marples, B. & Joiner, M. C. The response of Chinese hamster V79 cells to low radiation doses: evidence for enhanced sensitivity of the whole cell population. Radiat. Res. 133, 41–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Andreassen, C. N., Alsner, J. & Overgaard, J. Does variability in normal tissue reactions after radiotherapy have a genetic basis — where and how to look for it? Radiother. Oncol. 64, 131–140 (2002).

    Article  PubMed  Google Scholar 

  56. Svensson, J. P. et al. Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med. 10, e422 (2006).

    Article  CAS  Google Scholar 

  57. Scott, D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlenther. Onkol. 176, 229–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Correa, C. R. & Cheung, V. G. Genetic variation in radiation-induced expression phenotypes. Am. J. Hum. Genet. 75, 885–890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bennett, C. B. et al. Genes required for ionising radiation resistance in yeast. Nature Genet. 29, 426–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Van Haaften, G. et al. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr. Biol. 16, 1344–1350 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Vrouwe, M. et al. Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum. Mol. Genet. 16, 1478–1487 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Kirwan, M. & Dokal, I. Dyskeratosis congenita: a genetic disorder of many faces. Clin. Genet. 73, 103–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Darroudi, F. et al. Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionising radiation at different stages of cell cycle. Mutat. Res. 615, 111–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Degg, N. L. et al. Adenoma multiplicity in irradiated ApcMin mice is modified by chromosome 16 segments from BALB/c. Cancer Res. 63, 2361–2363 (2003).

    CAS  PubMed  Google Scholar 

  65. Williams, E. S. et al. Telomere dysfunction and DNA-PKcs deficiency: characterization and consequence. Cancer Res. 69, 2100–2107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rosemann, M. et al. Multilocus inheritance determines predisposition to α-radiation induced bone tumourigenesis in mice. Int. J. Cancer 118, 2132–2138 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Villa-Morales, M., Santos, J., Péréz-Goméz, E., Quintanilla, M. & Fernández-Piqueras, J. A role for the Fas/FasL system in modulating genetic susceptibility to T-cell lymphoblastic leukaemia. Cancer Res. 67, 5107–5116 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Saran, A. et al. Loss of tyrosinase activity confers increased skin tumour susceptibility in mice. Oncogene 23, 4130–4135 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Darakhshan, F. et al. Evidence for complex multigenic inheritance of radiation AML susceptibility in mice revealed using a surrogate phenotypic assay. Carcinogenesis 27, 311–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Epstein, E. Jr. Genetic determinants of basal cell carcinoma risk. Med. Pediatr. Oncol. 36, 555–558 (2001).

    Article  PubMed  Google Scholar 

  72. Wong, F. L. et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. J. Am. Med. Assoc. 278, 1262–1267 (1997).

    Article  CAS  Google Scholar 

  73. Little, M. P. Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int. J. Radiat. Biol. 77, 431–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Woo, Y. et al. The nonhomologous end joining factor Artemis suppresses multi-tissue tumor formation and prevents loss of heterozygosity. Oncogene 26, 6010–6020 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ma, W. et al. The transition of closely-opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA Polymerase δ and Rad27/Fen1. Mol. Cell. Biol. 29, 1212–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Budworth, H., Matthewman, G., O'Neill, P. & Dianov, G. L. Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks. J. Mol. Biol. 351, 1020–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Georgakilas, A. G., Bennett, P. V., Wilson, D. M. & Sutherland, B. M. Processing of bistranded abasic DNA clusters in γ-irradiated human hematopoietic cells. Nucleic Acids Res. 32, 5609–5620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  81. Löbrich, M. & Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature Rev. Cancer 7, 861–869 (2007).

    Article  CAS  Google Scholar 

  82. Xu, B., Kim, S. T., Lim, D. S. & Kastan, M. B. Two molecularly distinct G2/M checkpoints are induced by ionising irradiation. Mol. Cell. Biol. 22, 1049–1059 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Krueger, S. A., Joiner, M. C., Weinfeld, M., Piasentin, E. & Marples, B. Role of apoptosis in low-dose hyper-radiosensitivity. Radiat. Res. 167, 260–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Marples, B., Wouters, B. G. & Joiner, M. C. An association between the radiation-induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism? Radiat. Res. 160, 38–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Amundson, S. A. et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 68, 415–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Amundson, S. A., Bittner, M., Meltzer, P., Trent, J. & Fornace, A. J. Jr. Induction of gene expression as a monitor of exposure to ionising radiation. Radiat. Res. 156, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Amundson, S. A. Functional genomics in radiation biology: a gateway to cellular systems-level studies. Radiat. Environ. Biophys. 47, 25–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Ding, L. H. et al. Gene expression changes in normal human skin fibroblasts induced by HZE-particle radiation. Radiat. Res. 164, 523–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Franco, N. et al. Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat. Res. 163, 623–635 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Berglund, S. R. et al. Transient genome-wide transcriptional response to low-dose ionising radiation in vivo in humans. Int. J. Radiat. Oncol. Biol. Phys. 70, 229–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Fujimori, A. et al. Extremely low dose ionising radiation up-regulates CXC chemokines in normal human fibroblasts. Cancer Res. 65, 10159–10163 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Amundson, S. A. et al. Differential responses of stress genes to low dose-rate γ irradiation. Mol. Cancer Res. 1, 445–452 (2003).

    CAS  PubMed  Google Scholar 

  93. Bonassi, S. et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28, 625–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Bonassi, S. et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22,358 subjects in 11 countries. Carcinogenesis 29, 1178–1183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huber, R., Streng, S. & Bauchinger, M. The suitability of the human lymphocyte micronucleus assay system for biological dosimetry. Mutat. Res. 111, 185–193 (1983).

    Article  CAS  PubMed  Google Scholar 

  96. Huber, R., Schraube, H., Nahrstedt, U., Braselmann, H. & Bauchinger, M. Dose-response relationships of micronuclei in human lymphocytes induced by fission neutrons and by low LET radiations. Mutat. Res. 306, 135–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Lloyd, D. C. et al. Chromosomal aberrations in human lymphocytes induced in vitro by very low doses of X-rays. Int. J. Radiat. Biol. 61, 335–343 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Umebayashi, Y. et al. Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res. (Tokyo) 48, 7–11 (2007).

    Article  CAS  Google Scholar 

  99. de Nooij-van Dalen, A. G. et al. Isolation and molecular characterization of spontaneous mutants of lymphoblastoid cells with extended loss of heterozygosity. Mutat. Res. 374, 51–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Suraweera, N. et al. Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene 24, 3678–3683 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Soler, D., Genescà, A., Arnedo, G., Egozcue, J. & Tusell, L. Telomere dysfunction drives chromosomal instability in human mammary epithelial cells. Genes Chromosomes Cancer 44, 339–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Genescà, A. et al. Telomere dysfunction: a new player in radiation sensitivity. Bioessays 28, 1172–1180 (2006).

    Article  PubMed  CAS  Google Scholar 

  103. Morgan, W. F. Will radiation-induced bystander effects or adaptive responses impact on the shape of the dose response relationships at low doses of ionising radiation? Dose Response 4, 257–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prise, K. M., Folkard, M. & Michael, B. D. A review of the bystander effect and its implications for low-dose exposure. Radiat. Prot. Dosimetry 104, 347–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Wright, E. G. & Coates, P. J. Untargeted effects of ionising radiation: implications for radiation pathology. Mutat. Res. 597, 119–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Azzam, E. I. & Little, J. B. The radiation-induced bystander effect: evidence and significance. Hum. Exp. Toxicol. 23, 61–65 (2004).

    Article  PubMed  Google Scholar 

  107. Ojima, M., Ban, N. & Kai, M. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat. Res. 170, 365–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Mancuso, M. et al. Oncogenic bystander radiation effects in Patched. heterozygous mouse cerebellum. Proc. Natl Acad. Sci. USA 105, 12445–12450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lorimore, S. A., Chrystal, J. A., Robinson, J. I. Coates, P. J. & Wright, E. G. Chromosomal instability in unirradiated hemaopoietic cells induced by macrophages exposed in vivo to ionising radiation. Cancer Res. 68, 8122–8126 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Tapio, S. & Jacob, V. Radioadaptive response revisited. Radiat. Environ. Biophys. 46, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kovalchuk, O., Hendricks, C. A., Cassie, S., Engelward, A. J. & Engelward, B. P. In vivo recombination after chronic damage exposure falls to below spontaneous levels in “recombomice”. Mol. Cancer Res. 2, 567–573 (2004).

    CAS  PubMed  Google Scholar 

  112. Sykes, P. J. et al. In vivo mutagenic effect of very low dose radiation. Dose Response 4, 309–316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Michel, R. E. et al. The adaptive response modifies latency for radiation-induced myeloid leukaemia in CBA/H mice. Radiat. Res. 152, 273–279 (1999).

    Article  Google Scholar 

  114. Ina, Y. Tanooka, H., Yamada, T. & Sakai, K. Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat. Res. 163, 153–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. McGeorghegan, D., Binks, K., Gilles, M., Jones, S. & Whaley, S. The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int. J. Epidemiol. 37, 596–518 (2008).

    Google Scholar 

  116. Yamada, M., Wong, F. L., Fujiwara, S., Akahoshi, M. & Suzuki, G. Non-cancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res. 161, 622–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. ICRU. Publication 60: Fundamental Quantities and Units for Ionising Radiation (Elsevier, USA, 1998).

  118. ICRU. Publication 51: Quantities and Units in Radiation Protection Dosimetry (Elsevier, USA,1993).

Download references

Acknowledgements

We wish to thank P. Jeggo for critical reading of this manuscript and all RISC-RAD partners for contributing to this research area. Financial support to RISC-RAD is provided by the European Commission under contract FI6R-CT-2003-508,842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Mullenders.

Related links

Related links

DATABASES

OMIM

ataxia telangiectasia

FURTHER INFORMATION

Leon Mullenders' homepage

Central Research Institute of Electric Power Industry

Institute of Environmental Sciences

http://www.nirs.go.jp

Low Dose Radiation Research Program

National Institute for Radiological Sciences

NOTE

RISC-RAD

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullenders, L., Atkinson, M., Paretzke, H. et al. Assessing cancer risks of low-dose radiation. Nat Rev Cancer 9, 596–604 (2009). https://doi.org/10.1038/nrc2677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing