Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel anticancer targets: revisiting ERBB2 and discovering ERBB3

Key Points

  • The Erbb family consists of four closely related type 1 transmembrane tyrosine kinase receptors: the epidermal growth factor receptor (EGFR; also known as ERBB1), ERBB2, ERBB3 and ERBB4. Signalling through the Erbb family underpins many of the cellular activities on which cell survival and function depend.

  • EGFR, ERBB2 and ERBB3 are all implicated in the development and progression of cancer, and heterodimerization of the receptors plays a crucial part in their function. The role of ERBB4 in oncogenesis is less clear and this receptor might be involved in inhibition of cell growth rather than proliferation.

  • Aberrant ERBB2 expression or function has been implicated in the evolution of both breast and gastric cancers and is evident in other cancer types, including ovarian and salivary gland tumours. This receptor has proved to be a potent target for anticancer therapies, including antibody-based therapies to prevent ligand binding, dimer formation or antibody-dependent cell-mediated cytotoxicity, and direct kinase inhibition to prevent molecular activation and recruitment of downstream signalling partners.

  • New strategies against ERBB2 include Erbb tyrosine kinase inhibitors, heat shock protein 90 inhibitors, Erbb dimerization inhibitors and antibody–chemotherapy conjugates. All of these approaches have shown substantial clinical activity in patients who have progressed on trastuzumab, an anti-ERBB2 monoclonal antibody.

  • The extent of the role of ERBB3 is now emerging and considerable research efforts are focused on developing new therapies that target ERBB3.

  • ERBB3-specific monoclonal antibodies are now under evaluation, and data suggest that individual tyrosine kinase inhibitors might inhibit ERBB3 activation or its interaction with downstream signalling components.

  • Preventing the dimerization of ERBB3 with its signalling partners, in particular ERBB2 with which it forms the most potent mitogenic signalling dimer, might offer an effective method of preventing oncogenic signalling across the Erbb network.

Abstract

Aberrant receptor expression or functioning of the epidermal growth factor receptor (Erbb) family plays a crucial part in the development and evolution of cancer. Inhibiting the signalling activity of individual receptors in this family has advanced the treatment of a range of human cancers. In this Review we re-evaluate the role of two important family members, ERBB2 (also known as HER2) and ERBB3 (also known as HER3), and explore the mechanisms of action and preclinical and clinical data for new therapies that target signalling through these pivotal receptors. These new therapies include tyrosine kinase inhibitors, antibody–chemotherapy conjugates, heat-shock protein inhibitors and antibodies that interfere with the formation of ERBB2–ERBB3 dimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erbb receptors.
Figure 2: ERBB3 plays a central part in oncogenic signalling.
Figure 3: Potential ERBB2 targets for anticancer therapy.

Similar content being viewed by others

References

  1. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  2. Mendelsohn, J. & Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787–2799 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  4. Olayioye, M. A., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferguson, K. M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003). This paper reported the crystal structure of EGFR in its unbound 'closed' state in which the dimerization arm is hidden in the folded molecule, highlighting the need for a ligand-driven conformational change to allow receptor dimerization.

    Article  CAS  PubMed  Google Scholar 

  6. Cho, H. S. et al. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Burgess, A. W. et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Jeffrey, P. D. et al. The crystal structure of human cyclin H. Nature 376, 313–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Hubbard, S. R. EGF receptor activation: push comes to shove. Cell 125, 1029–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sierke, S. L., Cheng, K., Kim, H. H. & Koland, J. G. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem. J. 322, 757–763 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garrett, T. P. et al. The crystal structure of truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell 11, 495–505 (2003). This paper reported the crystal structure of ERBB2, showing that this receptor exists in an 'open' conformation and is constitutively available for dimerization.

    Article  CAS  PubMed  Google Scholar 

  14. Berger, M. B., Mendrola, J. M. & Lemmon, M. A. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett. 569, 332–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Feng, S. M. et al. The HER4 cytoplasmic domain, but not its C-terminus, inhibits mammary cell proliferation. Mol. Endocrinol. 21, 1861–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276–5287 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15, 2452–2467 (1996). This paper showed the lack of tyrosine kinase activity of the intracellular domain of ERBB3 and the ability of other Erbb members to transphosphorylate this region of the ERBB3 molecule and facilitate ERBB3-mediated signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, A. C. & Moasser, M. M. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br. J. Cancer 97, 453–457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee-Hoeflich, S. T. et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68, 5878–5887 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Owens, M. A. et al. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin. Breast Cancer 5, 63–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Yaziji, H. et al. HER-2 testing in breast cancer using parallel tissue-based methods. J. Am. Med. Assoc. 291, 1972–1977 (2004).

    Article  CAS  Google Scholar 

  23. Vermeij, J. et al. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers. BMC Cancer 8, 3 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jaehne, J. et al. Expression of Her2/neu oncogene product p185 in correlation to clinicopathological and prognostic factors of gastric carcinoma. J. Cancer Res. Clin. Oncol. 118, 474–479 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Cornolti, G. et al. Amplification and overexpression of HER2/neu gene and HER2/neu protein in salivary duct carcinoma of the parotid gland. Arch. Otolaryngol. Head Neck Surg. 133, 1031–1036 (2007). Refs 19–25 underscore the frequency and prognostic importance of ERBB2 overexpression in a range of human cancers, including breast, ovarian, gastric and salivary duct carcinomas.

    Article  PubMed  Google Scholar 

  26. Zuo, T. et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129, 1275–1286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, E. et al. The HER2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 7, 1027–1032 (1992).

    CAS  PubMed  Google Scholar 

  28. Park, K., Han, S., Kim, H. J., Kim, J. & Shin, E. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology 8, 702–707 (2006).

    Article  Google Scholar 

  29. Cappuzzo, F., Bemis, L. & Varella-Garcia, M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N. Engl. J. Med. 354, 2619–2621 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, S. E. et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Holbro, T. et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl Acad. Sci. USA 100, 8933–8938 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Prigent, S. A. & Gullick, W. J. Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J. 13, 2831–2841 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soltoff, S. P., Carraway, K. L. 3rd, Prigent, S. A., Gullick, W. G. & Cantley, L. C. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol. Cell. Biol. 14, 3550–3558 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hellyer, N. J., Cheng, K. & Koland, J. G. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem. J. 333, 757–763 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007). This paper reported the capacity for ERBB3 signalling to be upregulated to compensate for inhibition of other Erbb family members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Wheeler, D. L. et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27, 3944–3956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bobrow, L. G., Millis, R. R., Happerfield, L. C. & Gullick, W. J. c-erbB-3 protein expression in ductal carcinoma in situ of the breast. Eur. J. Cancer 33, 1846–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Quinn, C. M. et al. C-erbB-3 protein expression in human breast cancer: comparison with other tumor variables and survival. Histopathology 25, 247–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Travis, A. et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br. J. Cancer 74, 229–233 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siegel, P. M., Ryan, E. D., Cardiff, R. D. & Muller, W. J. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 18, 2149–2164 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Atlas, E. et al. Heregulin is sufficient for the promotion of tumorigenicity and metastasis of breast cancer cells in vivo. Mol. Cancer Res. 1, 165–175 (2003).

    CAS  PubMed  Google Scholar 

  44. Krane, I. M. & Leder, P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12, 1781–1788 (1996).

    CAS  PubMed  Google Scholar 

  45. Tsai, M. S., Shamon-Taylor, L. A., Mehmi, I., Tang, C. K. & Lupu, R. Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 22, 761–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Rajkumar, T., Stamp, G. W., Hughes, C. M. & Gullick, W. J. C-erbB3 protein expression in ovarian cancer. Clin. Mol. Pathol. 49, M199–M202 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanner, B. et al. ErbB-3 predicts survival in ovarian cancer. J. Clin. Oncol. 24, 4317–4323 (2006). This paper highlights the prognostic importance of ERBB3: high levels of ERBB3 expression are associated with a significantly shorter survival time compared with patients with tumours that overexpress ERBB2.

    Article  CAS  PubMed  Google Scholar 

  48. Campiglio, M., Ali, S., Knyazev, P. G. & Ullrich, A. Characteristics of EGFR family-mediated HRG signals in human ovarian cancer. J. Cell. Biochem. 73, 522–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Engelman, J. A. et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancers cell lines. Proc. Natl Acad. Sci. USA 102, 3788–3793 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gregory, C. W. et al. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin. Cancer Res. 11, 1704–1712 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Mellinghoff, I. K. et al. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6, 517–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hudziak, R. M. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell. Biol. 9, 1165–1173 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baselga, J. et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58, 2825–2831 (1998).

    CAS  PubMed  Google Scholar 

  54. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Ursini-Siegel, J. et al. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nature Rev. Cancer 7, 389–397 (2007).

    Article  CAS  Google Scholar 

  56. Hirata, A. et al. HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. Cancer Res. 65, 4253–4260 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Ritter, C. A. et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin. Cancer Res. 13, 4909–4919 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Gril, B. et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst. 100, 1092–1103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Drebin, J. A. et al. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecular exert synergistic anti-tumor effects in vivo. Oncogene 2, 273–277 (1988).

    CAS  PubMed  Google Scholar 

  60. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285–4289 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumor biology: Herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Lane, H. A. et al. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1–Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol. Cell. Biol. 20, 3210–3223 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le, X. F. et al. The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J. Biol. Chem. 278, 23441–23450 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Longva, K. E., Pedersen, N. M., Haslekås, C., Stang, E. & Madshus, I. H. Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. Int. J. Cancer 116, 359–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Cuello. M. et al. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 61, 4892–4900 (2001).

    CAS  PubMed  Google Scholar 

  68. Le, X. et al. Anti-HER2 antibody trastuzumab inhibits CDK2-mediated nPAt and histone H4 expression via the PI3K pathway. Cell Cycle 5, 1654–1661 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wehrman, T. S. et al. A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proc. Natl Acad. Sci. USA 103, 19063–19068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Molina, M. A. et al. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 61, 4744–4749 (2001).

    CAS  PubMed  Google Scholar 

  75. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic breast disease. J. Clin. Oncol. 17, 2639–2648 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Marty, M. et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J. Clin. Oncol. 23, 4265–4274 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Joensuu, H. et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 354, 809–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, I. et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Mohsin, S. K. et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J. Clin. Oncol. 23, 2460–2468 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Lazaridis, G., Pentheroudakis G. & Pavlidis N. Integrating trastuzumab in the neoadjuvant treatment of primary breast cancer: Accumulating evidence of efficacy, synergy and safety. Crit. Rev. Oncol. Hematol. 66, 31–41 (2008).

    Article  PubMed  Google Scholar 

  85. Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2–pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Hubbard, S. R. EGF receptor inhibition: attacks on multiple fronts. Cancer Cell 7, 287–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Fendly, B. M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50, 1550–1558 (1990).

    CAS  PubMed  Google Scholar 

  88. Sliwkowski, M. X. et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269, 14661–14665 (1994).

    CAS  PubMed  Google Scholar 

  89. Lewis, G. D. et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol. Immunother. 37, 255–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Schaefer, G., Fitzpatrick, V. D. & Sliwkowski, M. X. γ-Heregulin: a novel heregulin isoform that is an autocrine growth factor for the human breast tumor cell line, MDA-MB-175. Oncogene 15, 1385–1394 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Fitzpatrick, V. D., Pisacane, P. I., Vandlen, R. L. & Sliwkowski, M. X. Formation of a high affinity heregulin binding site using the soluble extracellular domains of ErbB2 with ErbB3 or ErbB4. FEBS Lett. 431, 102–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Mendoza, N., Philips, G. L., Silva, J., Schwall, R. & Wickramasinghe, D. Inhibition of ligand-mediated HER2 activation in androgen-independent prostate cancer. Cancer Res. 62, 5485–5488 (2002).

    CAS  PubMed  Google Scholar 

  93. Agus, D. B. et al. Targeting ligand activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137 (2002). This paper shows that pertuzumab is a humanized monoclonal antibody that inhibits ERBB2 dimerization.

    Article  CAS  PubMed  Google Scholar 

  94. Baselga, J. A new anti-ErbB2 strategy in the treatment of cancer: prevention of ligand-dependent ErbB2 receptor heterodimerization. Cancer Cell 2, 93–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Arteaga, C. L. et al. A phase I–II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB2)-overexpressing metastatic breast cancer. Clin. Cancer Res. 14, 6277–6283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mullen, P., Cameron, D. A., Hasmann, M., Smyth, J. F. & Langdon, S. P. Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-talk with estrogen receptor signaling. Mol. Cancer Ther. 6, 93–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Sakai, K. et al. Pertuzumab, a novel dimerization inhibitor, inhibits the growth of human lung cancer cells mediated by the HER3 signaling pathway. Cancer Sci. 98, 1498–1503 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Mann, M. et al. Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 120, 1713–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Cortes, J. et al. Open label, randomized, phase II study of pertuzumab (P) in patients (pts) with metastatic breast cancer (MBC) with low expression of HER2. J. Clin. Oncol. 23 (Suppl.), 3068 (2005).

    Article  Google Scholar 

  100. Nahta, R., Hung, M. C. & Esteva, F. J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 64, 2343–2346 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Spiridon, C. I. et al. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin. Cancer Res. 8, 1720–1730 (2002).

    CAS  PubMed  Google Scholar 

  102. Spiridon, C. I., Guinn, S. & Vitetta, E. S. A comparison of the in vitro and in vivo activities of IgG and F(ab′)2 fragments of a mixture of three monoclonal anti-Her-2 antibodies. Clin. Cancer Res. 10, 3542–3551 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Portera, C. C. et al. Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin. Cancer Res. 14, 2710–2716 (2008). This paper provides evidence for activity of pertuzumab in combination with trastuzumab in Phase II studies in patients with ERBB2-positive MBC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baselga, J. et al. Objective response rate in a phase II multicenter trial of pertuzumab, a HER2 dimerization inhibiting monoclonal antibody in combination with trastuzumab in patients with HER2-positive metastatic breast cancer which has progressed during treatment with trastuzumab. J. Clin. Oncol. 25 (Suppl.), 1004 (2007).

    Google Scholar 

  105. Gelmon, K. A. et al. Results of a Phase II trial of trastuzumab (H) and pertuzumab (P) in patients (pts) with HER2-positive metastatic breast cancer (MBC) who had progressed during trastuzumab therapy. J. Clin. Oncol. 26 (Suppl.), 1026 (2008).

    Article  Google Scholar 

  106. Burris, H. A. et al. A phase II study of trastuzumab-DM1 (T-DM1), a HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (MBC). The American Society for Clinical Oncology. [online] (2008).

    Google Scholar 

  107. O'Shaughnessy, J. et al. A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J. Clin. Oncol. 26 (Suppl.), 1015 (2008).

    Article  Google Scholar 

  108. Makhija, S. et al. Results from a Phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the addition of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J. Clin. Oncol. 25 (Suppl.), 5507 (2007).

    Google Scholar 

  109. Makhija, S. et al. HER3 pathway gene expression analysis in a Phase II study of pertuzumab + gemcitabine vs. gemcitabine + placebo in patients with platinum-resistant epithelial ovarian cancer. J. Clin. Oncol. 26 (Suppl.), 4483 (2008).

    Google Scholar 

  110. Amler, L. et al. in Proceedings of the 99th Annual Meeting of the American Association for Cancer Research, Abstract Number 4483 (San Diego, California, 2008).

    Google Scholar 

  111. Negro, A. et al. erbB2 is required for G protein-coupled receptor signaling in the heart. Proc. Natl Acad. Sci. USA 103, 15889–15893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kiewe, P. et al. Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 12, 3085–3091 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab–DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Austin, C. D. et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell 15, 5268–5282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Spector, N. L. et al. A study of the biological effects of lapatinib (GW572016), a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 23, 2502–2512 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Lin, N. U. et al. EGF 105084, a phase II study of lapatinib for brain metastases in patients (pts) with Her2+ breast cancer following trastuzumab (H) based systemic therapy and cranial radiotherapy. J. Clin. Oncol. 25 (Suppl.), 1112 (2007).

    Google Scholar 

  118. Pedersen, K. et al. A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis. Mol. Cell. Biol. 13 Apr 2009 (doi: 10.1128/MCB.01803-08).

  119. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Konecny, G. E. et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 66, 1630–1639 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803−814 (2009).

  122. Burstein, H. J. et al. in 31st San Antonio Breast Cancer Symposium, Abstract Number 37 (San Antonio, Texas, 2008).

    Google Scholar 

  123. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eskens, F. A. et al. A Phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumors. Br. J. Cancer 98, 80–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Freeman, D., Ogbagabriel, S., Rothe, M., Radinsky, R. & Treder, M. in Proceedings of the 99th Annual Meeting of the American Association for Cancer Research, Abstract Number LB-21(San Diego, California, 2008).

    Google Scholar 

  126. Citri, A., Kochupurakkal, B. S. & Yarden, Y. The achilles heel of ErbB-2/HER2: regulation of the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 3, 51–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Citri, A. et al. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J. 21, 2407–2417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mimnaugh, E. G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796–22801 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Münster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase–AKT-dependent pathway. Cancer Res. 62, 3132–3137 (2002).

    PubMed  Google Scholar 

  130. Modi, S. et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2 positive metastatic breast cancer (MBC). J. Clin. Oncol. 26 (Suppl.), 1027 (2008).

    Article  Google Scholar 

  131. Weinstein, I., B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3078 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA. 98, 10314–10319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Steelman, L. S. et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 27, 4086–4095 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genetics 7, 606–619 (2006).

    Article  CAS  Google Scholar 

  136. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  137. Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Gordon, M. S. et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J. Clin. Oncol. 4, 4324–4332 (2006).

    Article  CAS  Google Scholar 

  140. Herbst, R. S. et al. Efficacy and safety of single-agent pertuzumab, a human epidermal receptor dimerization inhibitor, in patients with non small cell lung cancer. Clin. Cancer Res. 13, 6175–6181 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. de Bono, J. S. et al. Open-label Phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naïve patients with hormone-refractory prostate cancer. J. Clin. Oncol. 25, 257–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Agus, D. B. et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J. Clin. Oncol. 23, 2534–2543 (2005). This paper shows the activity and tolerability of pertuzumab as a single agent in a Phase I study, and that the pharmacokinetic profile is supportive of dosing every 3 weeks.

    Article  CAS  PubMed  Google Scholar 

  143. Modi, S. et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER2-over expressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol. 25, 5410–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Miller, K. et al. Phase I trial of alvespimycin (KOS-1022; 17-DMAG) and trastuzumab (T). J. Clin. Oncol. 25 (Suppl.), 1115 (2007).

    Google Scholar 

Download references

Acknowledgements

Support for third-party writing assistance for this manuscript was provided by Genentech USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Baselga.

Ethics declarations

Competing interests

José Baselga has a consultant/advisory role for Roche, Infinity, Novartis and Exelixis. He receives research funding from GlaxoSmithKline.

Sandra M. Swain is an (unpaid) advisor for GNE and Sanofi-Aventis and has travelled for Sanofi-Aventis. She receives research funding from BMS and GNE.

Related links

Related links

DATABASES

CenterWatch Clinical Trials 

BO17929

ClinicalTrials.gov 

NCT00490139

NCT00545688

NCT00553358

NCT00567190

National Cancer Institute Drug Dictionary 

BIBW-2992

capecitabine

cetuximab

ertumaxomab

gefitinib

lapatinib

neratinib

pertuzumab

tanespimycin

trastuzumab

FURTHER INFORMATION

Vall d'Hebron Institute of Oncology homepage

FDA

Glossary

Overall survival

The total length of time from a particular point, such as diagnosis or initiation of treatment, until the patient succumbs to disease.

Clinical benefit rate

A metric that combines the proportion of patients who achieve any response or stable disease.

Overall response rate

Also known as the objective response rate.The proportion of patients who achieve either a complete or partial response to treatment.

Progression-free survival

The total length of time during and after treatment in which the disease does not get worse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baselga, J., Swain, S. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9, 463–475 (2009). https://doi.org/10.1038/nrc2656

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing