Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype

Abstract

A key challenge in radiotherapy is to maximize radiation doses to cancer cells while minimizing damage to surrounding healthy tissue. As severe toxicity in a minority of patients limits the doses that can be safely given to the majority, there is interest in developing a test to measure an individual's radiosensitivity before treatment. Variation in sensitivity to radiation is an inherited genetic trait and recent progress in genotyping raises the possibility of genome-wide studies to characterize genetic profiles that predict patient response to radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose–response curves for radiotherapy.
Figure 2: The toxicity of radiotherapy.
Figure 3: Proposed design for a radiation toxicity genome-wide association study (GWAS).

Similar content being viewed by others

References

  1. Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Andreassen, C. N. Can. risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol. 44, 801–815 (2005).

    Article  PubMed  Google Scholar 

  3. Alsner, J., Andreassen, C. N. & Overgaard, J. Genetic markers for prediction of normal tissue toxicity after radiotherapy. Semin. Radiat. Oncol. 18, 126–135 (2008).

    Article  PubMed  Google Scholar 

  4. Easton, D. F. & Eeles, R. A. Genome-wide association studies in cancer. Hum. Mol. Genet. 17, R109–R115 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Rev. Cancer 6, 702–713 (2006).

    Article  CAS  Google Scholar 

  6. Ringborg, U. et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 — summary and conclusions. Acta Oncol. 42, 357–365 (2003).

    Article  PubMed  Google Scholar 

  7. Dawson, L. A. & Sharpe, M. B. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 7, 848–858 (2006).

    Article  PubMed  Google Scholar 

  8. van Herk, M. Different styles of image-guided radiotherapy. Semin. Radiat. Oncol. 17, 258–267 (2007).

    Article  PubMed  Google Scholar 

  9. Glatstein, E. Intensity-modulated radiation therapy: the inverse, the converse, and the perverse. Semin. Radiat. Oncol. 12, 272–281 (2002).

    Article  PubMed  Google Scholar 

  10. Hong, T. S., Ritter, M. A., Tome, W. A. & Harari, P. M. Intensity-modulated radiation therapy: emerging cancer treatment technology. Br. J. Cancer 92, 1819–1824 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moran, J. M., Elshaikh, M. A. & Lawrence, T. S. Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol. 6, 51–58 (2005).

    Article  PubMed  Google Scholar 

  12. Ten Haken, R. K. & Lawrence, T. S. The clinical application of intensity-modulated radiation therapy. Semin. Radiat. Oncol. 16, 224–231 (2006).

    Article  PubMed  Google Scholar 

  13. Dearnaley, D. et al. Conventional or hypofractionated high dose intensity modulated radiotherapy in prostate cancer: Preliminary report on acute and late toxicity. A phase III multicentre trial (CHHIP). ASCO Proceedings 2007 Abstract 303 (2007).

  14. Bourhis, J. et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368, 843–854 (2006).

    Article  PubMed  Google Scholar 

  15. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. O'Driscoll, M. & Jeggo, P. A. The role of double-strand break repair — insights from human genetics. Nature Rev. Genet. 7, 45–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Petrini, J. H. & Stracker, T. H. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol. 13, 458–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).

    Article  CAS  Google Scholar 

  19. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  Google Scholar 

  20. Mikkelsen, R. B. & Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22, 5734–5754 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Robbins, M. E. & Diz, D. I. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys. 64, 6–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nature Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  23. Weis, S. M. Vascular permeability in cardiovascular disease and cancer. Curr. Opin. Hematol. 15, 243–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen and deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 57, 254–269 (1936) (in German).

    Google Scholar 

  25. Burnet, N. G., Johansen, J., Turesson, I., Nyman, J. & Peacock, J. H. Describing patients' normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy. Int. J. Cancer 79, 606–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bentzen, S. M. & Overgaard, J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin. Radiat. Oncol. 4, 68–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Holscher, T., Bentzen, S. M. & Baumann, M. Influence of connective tissue diseases on the expression of radiation side effects: a systematic review. Radiother. Oncol. 78, 123–130 (2006).

    Article  PubMed  Google Scholar 

  28. Coles, C. E. et al. Implementation of breast IMRT via a randomised control trial: a report of the first year's experience. Radiother. Oncol. 73 (Suppl. 1), S15 (2004).

    Google Scholar 

  29. Bentzen, S. M. High-tech in radiation oncology: should there be a ceiling? Int. J. Radiat. Oncol. Biol. Phys. 58, 320–330 (2004).

    Article  PubMed  Google Scholar 

  30. Turesson, I. Individual variation and dose dependency in the progression rate of skin telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 19, 1569–1574 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Bentzen, S. M. et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol. 9, 331–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Burnet, N. G., Wurm, R., Nyman, J. & Peacock, J. H. Normal tissue radiosensitivity — how important is it? Clin. Oncol. (R. Coll. Radiol.) 8, 25–34 (1996).

    Article  CAS  Google Scholar 

  33. Turesson, I., Nyman, J., Holmberg, E. & Oden, A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 1065–1075 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Davidson, S. E. et al. Short report: a morbidity scoring system for Clinical Oncology practice: questionnaires produced from the LENT SOMA scoring system. Clin. Oncol. (R. Coll. Radiol.) 14, 68–69 (2002).

    Article  CAS  Google Scholar 

  35. [No authors listed]. LENT SOMA tables. Radiother. Oncol. 35, 17–60 (1995).

  36. [No authors listed]. LENT SOMA scales for all anatomic sites. Int. J. Radiat. Oncol. Biol. Phys. 31, 1049–1091 (1995).

  37. Chassagne, D. et al. A glossary for reporting complications of treatment in gynecological cancers. Radiother. Oncol. 26, 195–202 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Litwin, M. S. et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med. Care 36, 1002–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Price, S. J. et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. Clin. Oncol. (R. Coll. Radiol.) 19, 577–587 (2007).

    Article  CAS  Google Scholar 

  40. Giotopoulos, G. et al. The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br. J. Cancer 96, 1001–1007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johansson, S., Svensson, H. & Denekamp, J. Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 48, 745–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bentzen, S. M., Vaeth, M., Pedersen, D. E. & Overgaard, J. Why actuarial estimates should be used in reporting late normal-tissue effects of cancer treatment ... now! Int. J. Radiat. Oncol. Biol. Phys. 32, 1531–1534 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Caplan, R. J., Pajak, T. F. & Cox, J. D. Analysis of the probability and risk of cause-specific failure. Int. J. Radiat. Oncol. Biol. Phys. 29, 1183–1186 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Haie-Meder, C. et al. Analysis of complications in a prospective randomized trial comparing two brachytherapy low dose rates in cervical carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 29, 953–960 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Peters, L. J., Withers, H. R. & Brown, B. W. Complicating issues in complication reporting. Int. J. Radiat. Oncol. Biol. Phys. 31, 1349–1351 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Taylor, A. M. et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258, 427–429 (1975).

    Article  CAS  PubMed  Google Scholar 

  47. Woods, W. G., Byrne, T. D. & Kim, T. H. Sensitivity of cultured cells to gamma radiation in a patient exhibiting marked in vivo radiation sensitivity. Cancer 62, 2341–2345 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Little, J. B. & Nove, J. Sensitivity of human diploid fibroblast cell strains from various genetic disorders to acute and protracted radiation exposure. Radiat. Res. 123, 87–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Loeffler, J. S., Harris, J. R., Dahlberg, W. K. & Little, J. B. In vitro radiosensitivity of human diploid fibroblasts derived from women with unusually sensitive clinical responses to definitive radiation therapy for breast cancer. Radiat. Res. 121, 227–231 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Plowman, P. N., Bridges, B. A., Arlett, C. F., Hinney, A. & Kingston, J. E. An instance of clinical radiation morbidity and cellular radiosensitivity, not associated with ataxia-telangiectasia. Br. J. Radiol. 63, 624–628 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Alter, B. P. Radiosensitivity in Fanconi's anemia patients. Radiother. Oncol. 62, 345–347 (2002).

    Article  PubMed  Google Scholar 

  52. Rogers, P. B., Plowman, P. N., Harris, S. J. & Arlett, C. F. Four radiation hypersensitivity cases and their implications for clinical radiotherapy. Radiother. Oncol. 57, 143–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Leong, T., Borg, M. & McKay, M. Clinical and cellular radiosensitivity in inherited human syndromes. Clin. Oncol. (R. Coll. Radiol.) 16, 206–209 (2004).

    Article  CAS  Google Scholar 

  54. Burnet, N. G. et al. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 339, 1570–1571 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Geara, F. B., Peters, L. J., Ang, K. K., Wike, J. L. & Brock, W. A. Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 27, 1173–1179 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Burnet, N. G. et al. The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother. Oncol. 33, 228–238 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Johansen, J., Bentzen, S. M., Overgaard, J. & Overgaard, M. Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy. Radiother. Oncol. 40, 101–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. West, C. M. et al. Lymphocyte radiosensitivity is a significant prognostic factor for morbidity in carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 51, 10–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Russell, N. S. et al. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int. J. Radiat. Biol. 73, 661–670 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Peacock, J. et al. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother. Oncol. 55, 173–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Dikomey, E., Borgmann, K., Peacock, J. & Jung, H. Why recent studies relating normal tissue response to individual radiosensitivity might have failed and how new studies should be performed. Int. J. Radiat. Oncol. Biol. Phys. 56, 1194–1200 (2003).

    Article  PubMed  Google Scholar 

  62. Dickson, J., Magee, B., Stewart, A. & West, C. M. Relationship between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiation reactions: a comparison of training and validation cohorts of breast cancer patients. Radiother. Oncol. 62, 321–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Ozsahin, M. et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin. Cancer Res. 11, 7426–7433 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. West, C. M., Elliott, R. M. & Burnet, N. G. The genomics revolution and radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 19, 470–480 (2007).

    Article  CAS  Google Scholar 

  65. Kruse, J. J. & Stewart, F. A. Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World J. Gastroenterol. 13, 2669–2674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sonis, S. et al. Gene expression changes in peripheral blood cells provide insight into the biological mechanisms associated with regimen-related toxicities in patients being treated for head and neck cancers. Oral Oncol. 43, 289–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Rieger, K. E. et al. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc. Natl Acad. Sci. USA 101, 6635–6640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Badie, C. et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br. J. Cancer 98, 1845–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Quarmby, S. et al. Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiat. Res. 157, 243–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Svensson, J. P. et al. Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med. 3, e422 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rodningen, O. K., Borresen-Dale, A. L., Alsner, J., Hastie, T. & Overgaard, J. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. Radiother. Oncol. 86, 314–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nature Rev. Genet. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hurles, M. E., Dermitzakis, E. T. & Tyler-Smith, C. The functional impact of structural variation in humans. Trends Genet. 24, 238–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mulero-Navarro, S. & Esteller, M. Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 68, 1–11 (2008).

    Article  PubMed  Google Scholar 

  76. Quarmby, S. et al. Association of transforming growth factor beta-1 single nucleotide polymorphisms with radiation-induced damage to normal tissues in breast cancer patients. Int. J. Radiat. Biol. 79, 137–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Andreassen, C. N., Alsner, J., Overgaard, M. & Overgaard, J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother. Oncol. 69, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Andreassen, C. N. et al. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother. Oncol. 75, 18–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Andreassen, C. N., Alsner, J., Overgaard, M., Sorensen, F. B. & Overgaard, J. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM — a study based on DNA from formalin fixed paraffin embedded tissue samples. Int. J. Radiat. Biol. 82, 577–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Baumann, M., Holscher, T. & Begg, A. C. Towards genetic prediction of radiation responses: ESTRO's GENEPI project. Radiother. Oncol. 69, 121–125 (2003).

    Article  PubMed  Google Scholar 

  81. Burnet, N. G., Elliott, R. M., Dunning, A. & West, C. M. Radiosensitivity, radiogenomics and RAPPER. Clin. Oncol. (R. Coll. Radiol.) 18, 525–528 (2006).

    Article  CAS  Google Scholar 

  82. Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Visscher, P. M., Andrew, T. & Nyholt, D. R. Genome-wide association studies of quantitative traits with related individuals: little (power) lost but much to be gained. Eur. J. Hum. Genet. 16, 387–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Ma, L., Runesha, H. B., Dvorkin, D., Garbe, J. R. & Da, Y. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformat. 9, 315 (2008).

    Article  CAS  Google Scholar 

  86. Chambers, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nature Genet. 40, 716–718 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, Y. J. et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum. Mol. Genet. 17, 1803–1813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genet. 40, 575–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genet. 40, 198–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nature Genet. 40, 584–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Sandhu, M. S. et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 371, 483–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kooner, J. S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nature Genet. 40, 149–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Kathiresan, S. et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S17 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Freimer, N. & Sabatti, C. The human phenome project. Nature Genet. 34, 15–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Flint, J. & Munafo, M. R. The endophenotype concept in psychiatric genetics. Psychol. Med. 37, 163–180 (2007).

    Article  PubMed  Google Scholar 

  99. Newton-Cheh, C. et al. Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S7 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mohlke, K. L., Boehnke, M. & Abecasis, G. R. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum. Mol. Genet. 17, R102–R108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Feijen, M., Gerritsen, J. & Postma, D. S. Genetics of allergic disease. Br. Med. Bull. 56, 894–907 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Scott, D. Chromosomal radiosensitivity and low penetrance predisposition to cancer. Cytogenet. Genome Res. 104, 365–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Roberts, S. A. et al. Heritability of cellular radiosensitivity: a marker of low-penetrance predisposition genes in breast cancer? Am. J. Hum. Genet. 65, 784–794 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, X. et al. Mutagen sensitivity has high heritability: evidence from a twin study. Cancer Res. 66, 5993–5996 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Borgmann, K. et al. Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes. Radiother. Oncol. 83, 196–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Finnon, P. et al. Evidence for significant heritability of apoptotic and cell cycle responses to ionising radiation. Hum. Genet. 123, 485–493 (2008).

    Article  PubMed  Google Scholar 

  107. Curwen, G. B. et al. G2 chromosomal radiosensitivity in Danish survivors of childhood and adolescent cancer and their offspring. Br. J. Cancer 93, 1038–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmitz, A., Bayer, J., Dechamps, N., Goldin, L. & Thomas, G. Heritability of susceptibility to ionizing radiation-induced apoptosis of human lymphocyte subpopulations. Int. J. Radiat. Oncol. Biol. Phys. 68, 1169–1177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk prediction, and targeted prevention of breast cancer. N. Engl. J. Med. 358, 2796–2803 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Janssens, A. C. & van Duijn, C. M. Genome-based prediction of common diseases: advances and prospects. Hum. Mol. Genet. 17, R166–R173 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Suit, H. The Gray Lecture 2001: coming technical advances in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 53, 798–809 (2002).

    Article  PubMed  Google Scholar 

  112. Horiot, J. C. et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother. Oncol. 25, 231–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Clarke, M. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366, 2087–2106 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Nyman, J. Thesis. Normal Skin Reactions in Radiotherapy: Proliferation, Progression and Prognostic Factors, Univ. Gothenburg (1995).

    Google Scholar 

  115. West, C. M. & Hendry, J. H. Intrinsic radiosensitivity as a predictor of patient response to radiotherapy. BJR Suppl. 24, 146–152 (1992).

    CAS  PubMed  Google Scholar 

  116. West, C. M. et al. The intrinsic radiosensitivity of normal and tumour cells. Int. J. Radiat. Biol. 73, 409–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 13, 1237–1240 (1987).

    Article  CAS  PubMed  Google Scholar 

  118. Agren, A., Brahme, A. & Turesson, I. Optimization of uncomplicated control for head and neck tumors. Int. J. Radiat. Oncol. Biol. Phys. 19, 1077–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  119. Abraham, J., Earl, H. M., Pharoah, P. D. & Caldas, C. Pharmacogenetics of cancer chemotherapy. Biochim. Biophys. Acta 1766, 168–183 (2006).

    CAS  PubMed  Google Scholar 

  120. [No authors listed]. Radiotherapy for cancer. Acta Oncol. 35 (Suppl. 6), 75–83 (1996).

  121. Hopewell, J. W. & Trott, K. R. Volume effects in radiobiology as applied to radiotherapy. Radiother. Oncol. 56, 283–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Thomas, D. C., Haile, R. W. & Duggan, D. Recent developments in genomewide association scans: a workshop summary and review. Am. J. Hum. Genet. 77, 337–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  124. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genet. 40, 316–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genet. 39, 984–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Broderick, P. et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nature Genet. 39, 1315–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lettre, G. & Rioux, J. D. Autoimmune diseases: insights from genome-wide association studies. Hum. Mol. Genet. 17, R116–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kato, N. et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum. Mol. Genet. 17, 617–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Levy, D. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet. 8 (Suppl. 1), S3 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Turesson, I. & Thames, H. D. Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year's follow-up. Radiother. Oncol. 15, 169–188 (1989).

    Article  CAS  PubMed  Google Scholar 

  131. Schultheiss, T. E. The radiation dose-response of the human spinal cord. Int. J. Radiat. Oncol. Biol. Phys. 71, 1455–1459 (2008).

    Article  PubMed  Google Scholar 

  132. Bentzen, S. M. & Overgaard, M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother. Oncol. 20, 159–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  133. Bentzen, S. M., Overgaard, M. & Overgaard, J. Clinical correlations between late normal tissue endpoints after radiotherapy: implications for predictive assays of radiosensitivity. Eur. J. Cancer 29A, 1373–1376 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by Cancer Research UK, The Royal College of Radiologists, Breast Cancer Campaign, the National Institute for Health Research Cambridge Biomedical Research Centre, and Experimental Cancer Research Centre funding. G.C.B. is funded by a fellowship from Cancer Research UK and The Royal College of Radiologists. P.D.P.P. is a Cancer Research UK Senior Clinical Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian C. Barnett.

Supplementary information

Supplementary information S1 (table)

Published candidate gene studies linking genotype with radiotherapy toxicity (PDF 159 kb)

Related links

Related links

DATABASES

OMIM

ataxia telangiectasia

Bloom's syndrome

Fanconi's anaemia

Nijmegen breakage syndrome

FURTHER INFORMATION

ASTRO

Cancer Research UK Department of Oncology at Strangeways

CTCAE v3.0

ESTRO

International Agency for Research on Cancer

International HapMap Project

The NIEHS SNPs Program

SeattleSNPs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, G., West, C., Dunning, A. et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9, 134–142 (2009). https://doi.org/10.1038/nrc2587

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing