Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do 'basal-like' breast cancers really exist?

Abstract

It has been proposed that gene expression profiles will revolutionize the classification of breast cancer, eventually replacing histopathology with a more reproducible technology. These new approaches, combined with a better understanding of the cellular origins of breast cancer, should enable us to identify patient subgroups for more effective therapy. However, in such a rapidly advancing field it is essential that initial and thought-provoking results do not become established as 'facts' without question. This Opinion addresses some of the negatives and positives generated by the term 'basal-like' breast cancer, and questions its existence as an entity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Breast cancer-specific survival (log–rank).
Figure 2: Normal breast tissue.
Figure 3: The rise of the term basal-like.
Figure 4: Cytokeratin expression in the human breast.

Similar content being viewed by others

References

  1. Blamey, R. W. et al. Survival of invasive breast cancer according to the Nottingham Prognostic Index in cases diagnosed in 1990–1999 Eur. J. Cancer 43, 1548–1555 (2007).

    Article  CAS  Google Scholar 

  2. National Institutes of Health Consensus Development Conference statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. Natl Cancer Inst. Monogr. 93, 5–15 (2001).

  3. Goldhirsh, A. et al. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J. Clin. Oncol. 21, 3357–3365 (2003).

    Article  Google Scholar 

  4. Reis-Filho, J. S. & Tutt, A. N. Triple negative tumours: a critical review. Histopathology 52, 108–118 (2008).

    Article  CAS  Google Scholar 

  5. Reis-Filho, J. S. & Lakhani, S. R. Breast cancer special types: why bother? J. Pathol. 216, 394–398 (2008).

    Article  CAS  Google Scholar 

  6. Sotiriou, C. & Piccart, M. J. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nature Rev. Cancer 7, 545–553 (2007).

    Article  CAS  Google Scholar 

  7. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  Google Scholar 

  8. Peppercorn, J., Perou, C. M. & Carey, L. A. Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest. 26, 1–10 (2008).

    Article  CAS  Google Scholar 

  9. Anbazhagan, R. et al. The development of epithelial phenotypes in the human fetal and infant breast. J. Pathol. 184, 197–206 (1998).

    Article  CAS  Google Scholar 

  10. Wellings, S. R. & Jensen, H. M. On the origin and progression of ductal carcinoma in the human breast. J. Natl Cancer Inst. 50, 1111–1118 (1973).

    Article  CAS  Google Scholar 

  11. Bouras, T. et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3, 429–441 (2008).

    Article  CAS  Google Scholar 

  12. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and liminal-cell differetiation. Nature Cell Biol. 9, 201–209 (2007).

    Article  CAS  Google Scholar 

  13. Kordon, E. C., Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    CAS  PubMed  Google Scholar 

  14. Stingl, J. et al. Purification and unique properties of mammary epithelial stem calls. Nature 439, 993–997 (2006).

    CAS  Google Scholar 

  15. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  Google Scholar 

  16. Asselin-Labat, M.-L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst. 98, 1011–1014 (2006).

    Article  CAS  Google Scholar 

  17. Dontu, G. et al. In vitro propagation and transcriptional prfiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

    Article  CAS  Google Scholar 

  18. Gudjonsson, T. et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16, 693–706 (2002).

    Article  CAS  Google Scholar 

  19. Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007).

    Article  CAS  Google Scholar 

  20. Rosen, P. P. Rosen's Breast Pathology. 3rd edn (ed. Pine, J. W.) (Lippincott Williams and Wilkins, Philadelphia, 2008).

    Google Scholar 

  21. Gusterson, B. A., Ross, D. T., Heath, V. J. & Stein, T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 7, 143–148 (2005).

    Article  CAS  Google Scholar 

  22. Leibl, S., Gogg-Kammerer, M., Sommersacher, A., Denk, H. & Moinfar, F. Metaplastic breast carcinomas: are they of myoepithelial differentiation?: immunohistochemical profile of the sartcomatoid sybtype using novel myoepithelial markers. Am. J. Surg. Pathol. 29, 347–353 (2005).

    Article  Google Scholar 

  23. Al-Hajj, M. et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  24. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumours. Nature Genet. 40, 499–507 (2008).

    Article  CAS  Google Scholar 

  25. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA. 98, 10869–10874 (2001).

    Article  CAS  Google Scholar 

  26. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  27. Nagle RB. et al. Characterization of breast carcinmoas by two monoclonal antibodies distinguishing myoepithelial from luminal epthelial cells. J. Histochem. Cytochem. 34, 869–881 (1986).

    Article  CAS  Google Scholar 

  28. Livasy, C. A., et al. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum. Pathol. 38, 197–204, (2007).

    Article  CAS  Google Scholar 

  29. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  Google Scholar 

  30. Rakha, E. A. et al. Are triple-negative tumours and basal-like breast cancer synonymous? Breast Cancer Res. 9, 404 (2007).

    Article  Google Scholar 

  31. Rakha, E. A., El-Sayed, M. E., Reis-Filho, J. & Ellis, I. O. Patho-biological aspects of basal-like breast cancer. Breast Cancer Res. Treat. 9 Mar 2008 (doi 10.1007/s10549-008-0007–0004).

  32. Moinfar, F. Is 'basal-like' carcinoma of the breast a distinct clinicopathological entity? A critical review with cautionary notes. Pathobiology 75, 119–131 (2008).

    Article  CAS  Google Scholar 

  33. Malzahn, K., Mitze, M., Thoenes, M. & Moll, R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch. 433, 119–129 (1998).

    Article  CAS  Google Scholar 

  34. Livasy, C. A. et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol. 19, 264–271 (2006).

    Article  CAS  Google Scholar 

  35. Dairkee, S. H. Monoclonal marker that predicts early recurrence of breast cancer. Lancet 1, 514 (1987).

    Article  CAS  Google Scholar 

  36. Nielsen, T. O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    Article  CAS  Google Scholar 

  37. Cheang, M. C. et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res. 14, 1368–1376 (2008).

    Article  CAS  Google Scholar 

  38. Behbod, F. & Rosen, J. M. Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26, 703–711 (2005).

    Article  CAS  Google Scholar 

  39. Sims, A. H., Howell, A., Howell, S. J. & Clarke, R. B. Origins of breast cancer subtypes and therapeutic implications. Nature Clin. Pract. Oncol. 4, 516–525 (2007).

    Article  CAS  Google Scholar 

  40. Korsching, E. et al. Basal carcinoma of the breast revisited: an old entity with new interpretations. J. Clin. Pathol. 61, 553–560 (2008).

    Article  CAS  Google Scholar 

  41. Stingl, J. & Caldas, C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nature Rev. Cancer 7, 791–799 (2007).

    Article  CAS  Google Scholar 

  42. Rakha, E. A., Reis-Filho, J. S. & Ellis, I. O. Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008).

    Article  Google Scholar 

  43. Bossuyt, B. et al. Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int. J. Surg. Pathol. 13, 319–327 (2005).

    Article  CAS  Google Scholar 

  44. Ince, T. A. et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007).

    Article  CAS  Google Scholar 

  45. Renou, J.-P. et al. Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated β-catenin. Oncegene 22, 4594–4610 (2003).

    Article  CAS  Google Scholar 

  46. Rosner, A., et al. Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumours. Am. J. Pathol. 161, 1087–1097 (2002).

    Article  CAS  Google Scholar 

  47. McCarthy, A. et al. A mouse model of basal-like breast carcinoma with metaplastic elements. J. Pathol. 211, 389–398 (2007).

    Article  CAS  Google Scholar 

  48. Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    Article  CAS  Google Scholar 

  49. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  Google Scholar 

  50. Hosey, A. M. et al. Molecular basis for estrogen receptor α deficiency in BRCA1-linked breast cancer. J. Natl Cancer Inst. 99, 1683–1694 (2007).

    Article  CAS  Google Scholar 

  51. Liu, S. et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc. Natl Acad. Sci. USA 105, 1680–1685 (2008).

    Article  CAS  Google Scholar 

  52. Foulkes, W. D. BRCA1 functions as a breast stem cell regulator. J. Med. Genet. 41, 1–5 (2004).

    Article  CAS  Google Scholar 

  53. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  Google Scholar 

  54. Foulkes, W. D. et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst. 95, 1482–1485 (2003).

    Article  CAS  Google Scholar 

  55. Lakhani, S. R. et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res. 11, 5175–5180 (2005).

    Article  CAS  Google Scholar 

  56. Crook, T., Crossland, S., Crompton, M. R., Osin, P. & Gusterson, B. A. p53 mutations in BRCA1-associated familial breast cancer. Lancet 350, 638–639 (1997).

    Article  CAS  Google Scholar 

  57. Rakha, E. A. et al. Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum. Pathol. 39, 857–865 (2008).

    Article  CAS  Google Scholar 

  58. Turner, N. C. et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26, 2126–2132 (2007).

    Article  CAS  Google Scholar 

  59. Mullan, P. B., Gorski, J. J. & Harkin, D. P. BRCA1 — a good predictive marker of drug sensitivity in breast cancer treatment? Biochim. Biophys. Acta 1766, 205–216 (2006).

    CAS  PubMed  Google Scholar 

  60. Kilburn, L. S. 'Triple negative' breast cancer: a new area for phase III breast cancer clinical trials. Clin. Oncol. 20, 35–39 (2008).

    Article  CAS  Google Scholar 

  61. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    Article  CAS  Google Scholar 

  62. Haibe-Kains, B. et al. Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics 9, 394 (2008).

    Article  Google Scholar 

  63. Marchio, C. et al. The genomic profile of HER2-amplified breast cancers: the influence of ER status. J. Pathol. 216, 399–407 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The laboratory of B.G. is supported by Breakthrough Breast Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Gusterson.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

docetaxel

Uniprot

ERBB2

BRCA1

GATA3

cytokeratin 14

p63

EGFR

cytokeratin 18

ERα

PR

cytokeratin 8

αSMA

MUC1

CD44

CD10

cytokeratin 17

cytokeratin 7

cytokeratin 13

cytokeratin 19

cytokeratin 4

WNT1

KIT

FURTHER INFORMATION

B. Gusterson's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusterson, B. Do 'basal-like' breast cancers really exist?. Nat Rev Cancer 9, 128–134 (2009). https://doi.org/10.1038/nrc2571

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing