Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?

Abstract

Aberrations in proteins that control apoptosis and cell survival are common in cancer. These aberrations often reside in signalling proteins that control the activation of the apoptotic machinery or in the Bcl-2 family of proteins that control caspase activation. Recent evidence suggests that caspase 2, one of the most evolutionarily conserved caspases, may have multiple roles in the DNA damage response, cell cycle regulation and tumour suppression. These findings are unexpected and have important implications for our understanding of tumorigenesis and the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase 2-mediated and caspase 2-independent apoptotic pathways.
Figure 2: Caspase 2 function in DNA damage signalling.
Figure 3: A caspase 2-mediated apoptotic pathway in response to double-strand DNA breaks in CHK1-inhibited cells.
Figure 4: A speculative model of apoptotic and non-apoptotic functions of caspase 2.

Similar content being viewed by others

References

  1. Kumar, S. Caspase function in programmed cell death. Cell Death Differ. 14, 32–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 14, 10–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bao, Q. & Shi, Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 14, 56–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284, 21777–21781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185, 1155–1161 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G. & Jenkins, N. A. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev. 8, 1613–1626 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Kitevska, T., Spencer, D. M. & Hawkins, C. J. Caspase-2: controversial killer or checkpoint controller? Apoptosis 14, 829–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Krumschnabel, G., Sohm, B., Bock, F., Manzl, C. & Villunger, A. The enigma of caspase-2: the laymen's view. Cell Death Differ. 16, 195–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Krumschnabel, G., Manzl, C. & Villunger, A. Caspase-2: killer, savior and safeguard-emerging versatile roles for an ill-defined caspase. Oncogene 28, 3093–3096 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Troy, C. M. & Ribe, E. M. Caspase-2: vestigial remnant or master regulator? Sci. Signal. 1, pe42 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Robertson, J. D., Enoksson, M., Suomela, M., Zhivotovsky, B. & Orrenius, S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem. 277, 29803–29809 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Tyagi, A., Singh, R. P., Agarwal, C. & Agarwal, R. Silibinin activates p53–caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2. Carcinogenesis 27, 2269–2280 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Vakifahmetoglu, H., Olsson, M., Orrenius, S. & Zhivotovsky, B. Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 25, 5683–5692 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Baptiste-Okoh, N., Barsotti, A. M. & Prives, C. A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 105, 1937–1942 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, X., Bennett, R. L. & May, W. S. c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J. Biol. Chem. 283, 14490–14496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madesh, M. et al. Execution of superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak. Mol. Cell. Biol. 29, 3099–3112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braga, M. et al. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13, 822–832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu, H., Chen, X., Gao, G. & Dong, H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol. Cancer Ther. 7, 2298–2307 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Shin, S. et al. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J. 24, 3532–3542 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wagner, K. W., Engels, I. H. & Deveraux, Q. L. Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J. Biol. Chem. 279, 35047–35052 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Troy, C. M. et al. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J. Neurosci. 21, 5007–5016 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. J. Neurosci. 20, 1386–1392 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nutt, L. K. et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123, 89–103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nutt, L. K. et al. Metabolic control of oocyte apoptosis mediated by 14-3-3ζ-regulated dephosphorylation of caspase-2. Dev. Cell 16, 856–866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–1314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Reilly, L. A. et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ. 9, 832–841 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Colussi, P. A., Harvey, N. L. & Kumar, S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J. Biol. Chem. 273, 24535–24542 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Paroni, G., Henderson, C., Schneider, C. & Brancolini, C. Caspase-2 can trigger cytochrome c release and apoptosis from the nucleus. J. Biol. Chem. 277, 15147–15161 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Baliga, B. C. et al. Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J. Biol. Chem. 278, 4899–4905 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Harvey, N. L., Butt, A. J. & Kumar, S. Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. J. Biol. Chem. 272, 13134–13139 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Li, H. et al. Activation of caspase-2 in apoptosis. J. Biol. Chem. 272, 21010–21017 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ho, L. H. et al. A tumor suppressor function for caspase-2. Proc. Natl Acad. Sci. USA 106, 5336–5341 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, M. et al. DNA-PKcs–PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell 136, 508–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pan, Y., Ren, K. H., He, H. W. & Shao, R. G. Knockdown of Chk1 sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. Cancer Biol. Ther. 8 32–39 (2009).

    Google Scholar 

  39. Kumar, S. & Colussi, P. A. Prodomains–adaptors–oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem. Sci. 24, 1–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Butt, A. J., Harvey, N. L., Parasivam, G. & Kumar, S. Dimerization and autoprocessing of the Nedd2 (caspase-2) precursor requires both the prodomain and the carboxyl-terminal regions. J. Biol. Chem. 273, 6763–6768 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Baliga, B. C., Read, S. H. & Kumar, S. The biochemical mechanism of caspase-2 activation. Cell Death Differ. 11, 1234–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Read, S. H., Baliga, B. C., Ekert, P. G., Vaux, D. L. & Kumar, S. A novel Apaf-1-independent putative caspase-2 activation complex. J. Cell Biol. 159, 739–745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, P. K., Jabbour, A. M., Ekert, P. G. & Hawkins, C. J. Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7. FEBS J. 272, 1401–1414 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Colussi, P. A., Harvey, N. L., Shearwin-Whyatt, L. M. & Kumar, S. Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. J. Biol. Chem. 273, 26566–26570 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-κB pathway. EMBO J. 26, 197–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. J. Cell Biol. 185, 291–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, I. R. et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 14, 1039–1049 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, C. F. et al. Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced apoptosis. J. Biol. Chem. 279, 40755–40761 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. & Alnemri, E. S. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277, 13430–13437 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Mohan, J. et al. Caspase-2 triggers Bax–Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J. Biol. Chem. 281, 17599–17611 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Tu, S. et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biol. 8, 72–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Mhaidat, N. M., Wang, Y., Kiejda, K. A., Zhang, X. D. & Hersey, P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol. Cancer Ther. 6, 752–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Ho, L. H., Read, S. H., Dorstyn, L., Lambrusco, L. & Kumar, S. Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 27, 3393–3404 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. McStay, G. P., Salvesen, G. S. & Green, D. R. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15, 322–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Slee, E. A., Adrain, C. & Martin, S. J. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 6, 1067–1074 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Paroni, G., Henderson, C., Schneider, C. & Brancolini, C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J. Biol. Chem. 276, 21907–21915 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Harvey, N. L. et al. Processing of the Nedd2 precursor by ICE-like proteases and granzyme B. Genes Cells 1, 673–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Cullen, S. P. & Martin, S. J. Caspase activation pathways: some recent progress. Cell Death Differ. 16, 935–938 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Inoue, S., Browne, G., Melino, G. & Cohen, G. M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16, 1053–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Marsden, V. S. et al. Bcl-2-regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. J. Cell Biol. 165, 775–780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhivotovsky, B., Samali, A., Gahm, A. & Orrenius, S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ. 6, 644–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β -converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Daish, T. J., Mills, K. & Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Chew, S. K. et al. The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev. Cell 7, 897–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Morita, Y. et al. Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of ataxia telangiectasia-mutated (Atm) gene function. Cell Death Differ. 8, 614–620 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y. et al. Caspase-2 deficiency enhances aging-related traits in mice. Mech. Ageing Dev. 128, 213–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kumar, S. et al. Apoptosis regulatory gene NEDD2 maps to human chromosome segment 7q34–35, a region frequently affected in haematological neoplasms. Hum. Genet. 95, 641–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Mrozek, K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin. Oncol. 35, 365–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johansson, B., Mertens, F. & Mitelman, F. Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. Genes Chromosomes Cancer 8, 205–218 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Holleman, A. et al. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. Blood 106, 1817–1823 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Hofmann, W. K. et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood 98, 787–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Yoo, N. J. et al. Loss of caspase-2, -6 and -7 expression in gastric cancers. APMIS 112, 330–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Zohrabian, V. M. et al. Gene expression profiling of metastatic brain cancer. Oncol. Rep. 18, 321–328 (2007).

    CAS  PubMed  Google Scholar 

  75. Estrov, Z. et al. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood 92, 3090–3097 (1998).

    CAS  PubMed  Google Scholar 

  76. Faderl, S. et al. Caspase 2 and caspase 3 as predictors of complete remission and survival in adults with acute lymphoblastic leukemia. Clin. Cancer Res. 5, 4041–4047 (1999).

    CAS  PubMed  Google Scholar 

  77. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Kuroda, J. & Taniwaki, M. Involvement of BH3-only proteins in hematologic malignancies. Crit. Rev. Oncol. Hematol. 71, 89–101 (2009).

    Article  PubMed  Google Scholar 

  79. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  Google Scholar 

  80. Vakifahmetoglu, H. et al. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ. 15, 555–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Mendelsohn, A. R., Hamer, J. D., Wang, Z. B. & Brent, R. Cyclin D3 activates caspase 2, connecting cell proliferation with cell death. Proc. Natl Acad. Sci. USA 99, 6871–6876 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Anderson, J. L. et al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J. 3 Sep 2009 (doi:10.1038/emboj.2009.253).

  83. Lavin, M. F. Ataxia–telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nature Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  84. Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 40, 363–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Olsson, M. et al. DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28, 1949–1959 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Bonzon, C., Bouchier-Hayes, L., Pagliari, L. J., Green, D. R. & Newmeyer, D. D. Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol. Biol. Cell 17, 2150–2157 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Upton, J. P. et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol. Cell. Biol. 28, 3943–3951 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Donna Denton, Martin Lavin and Loretta Dorstyn for helpful comments. The work in my laboratory is supported by the National Health and Medical Research Council of Australia and the Cancer Council of South Australia.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

5-fluorouracil

cisplatin

docetaxel

L-asparaginase

prednisolone

vincristine

OMIM

ALL

AML

FURTHER INFORMATION

S. Kumar's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?. Nat Rev Cancer 9, 897–903 (2009). https://doi.org/10.1038/nrc2745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing