Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mucins in cancer: function, prognosis and therapy

Key Points

  • Epithelial cells form a layer in which an apical surface is exposed to the external environment and to other forms of stress in ducts in specialized organs. As such, epithelial cells require robust defence mechanisms to avoid sustaining damage.

  • Secreted mucins are highly glycosylated proteins that form a physical barrier, which protects epithelial cells from stress-induced damage. Transmembrane mucins also contribute to the physical barrier and transmit growth and survival signals to the interior of the cell.

  • Deregulation of secreted mucin 2 (MUC2) production has provided an important link between inflammation and cancer. Expression of the transmembrane mucin MUC1 is upregulated in response to chronic inflammation.

  • Aberrant overexpression of transmembrane mucins is associated with diverse human carcinomas and, somewhat paradoxically, certain haematological malignancies. Human cancers have exploited the function of these mucins in promoting growth and survival.

  • Overexpression of transmembrane mucins contributes to oncogenesis by promoting receptor tyrosine kinase signalling, loss of epithelial cell polarity, constitutive activation of growth and survival pathways (for example, the Wnt–β-catenin and nuclear factor-κB pathways), and downregulation of stress-induced death pathways.

  • Gene expression profiling and analysis of protein levels have demonstrated that overexpression of transmembrane mucins is associated with a poor prognosis in several different types of carcinomas. Circulating levels of the transmembrane mucins MUC1 and MUC16 are used to monitor the clinical course of patients with breast and ovarian cancer, respectively.

  • Overexpression of the transmembrane mucins in human cancers has made them highly attractive targets for the development of vaccines, antibodies and drug inhibitors. Recent work has demonstrated that the MUC1 cytoplasmic domain is a direct drug target and that inhibition of MUC1 function blocks survival and tumorigenicity of human breast and prostate cancers in preclinical models.

Abstract

Epithelia are protected from adverse conditions by a mucous barrier. The secreted and transmembrane mucins that constitute the mucous barrier are largely unrecognized as effectors of carcinogenesis. However, both types of mucins are intimately involved in inflammation and cancer. Moreover, diverse human malignancies overexpress transmembrane mucins to exploit their role in signalling cell growth and survival. Mucins have thus been identified as markers of adverse prognosis and as attractive therapeutic targets. Notably, the findings that certain transmembrane mucins induce transformation and promote tumour progression have provided the experimental basis for demonstrating that inhibitors of their function are effective as anti-tumour agents in preclinical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secreted and transmembrane mucins form physical barriers that protect epithelia.
Figure 2: Epithelial stress response is associated with loss of polarity and repositioning of cell surface receptors.
Figure 3: Transmembrane mucins, loss of polarity and disruption of cell–cell adhesion.
Figure 4: Mucins, chronic inflammation and cancer.
Figure 5: Activation of MUC1-C in stress and transformation.

Similar content being viewed by others

References

  1. Desseyn, J. L. et al. Evolutionary history of the 11p15 human mucin gene family. J. Mol. Evol. 46, 102–106 (1998).

    CAS  PubMed  Google Scholar 

  2. Desseyn, J. L., Aubert, J. P., Porchet, N. & Laine, A. Evolution of the large secreted gel-forming mucins. Mol. Biol. Evol. 17, 1175–1184 (2000).

    CAS  PubMed  Google Scholar 

  3. Bork, P. & Patthy, L. The SEA module: a new extracellular domain associated with O-glycosylation. Protein Sci. 4, 1421–1425 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Asker, N., Axelsson, M. A., Olofsson, S. O. & Hansson, G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J. Biol. Chem. 273, 18857–18863 (1998).

    CAS  PubMed  Google Scholar 

  5. Herrmann, A. et al. Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J. Biol. Chem. 274, 15828–15836 (1999).

    CAS  PubMed  Google Scholar 

  6. Godl, K. et al. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277, 47248–47256 (2002).

    CAS  PubMed  Google Scholar 

  7. Lidell, M. E. et al. The recombinant C-terminus of the human MUC2 mucin forms dimers in Chinese-hamster ovary cells and heterodimers with full-length MUC2 in LS 174T cells. Biochem. J. 372, 335–345 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    CAS  PubMed  Google Scholar 

  9. van der Sluis, M. et al. MUC2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 1, 117–129 (2006). This paper demonstrated that MUC2 deficiency in the Muc2−/− mouse model leads to the spontaneous development of colitis. Previous work by Velcich et al . (reference 8 ) had shown that these mice develop colorectal tumours.

    Google Scholar 

  10. Duraisamy, S., Kufe, T., Ramasamy, S. & Kufe, D. Evolution of the human MUC1 oncoprotein. Int. J. Oncology 31, 671–677 (2007).

    CAS  Google Scholar 

  11. Kufe, D. et al. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3, 223–232 (1984).

    CAS  PubMed  Google Scholar 

  12. Ligtenberg, M. J. et al. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem. 267, 6171–6177 (1992).

    CAS  PubMed  Google Scholar 

  13. Levitin, F. et al. The MUC1 SEA module is a self-cleaving domain. J. Biol. Chem. 280, 33374–33386 (2005).

    CAS  PubMed  Google Scholar 

  14. Macao, B., Johansson, D. G., Hansson, G. C. & Hard, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nature Struct. Mol. Biol. 13, 71–76 (2006).

    CAS  Google Scholar 

  15. Siddiqui, J. et al. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc. Natl. Acad. Sci. USA 85, 2320–2323 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gendler, S., Taylor-Papadimitriou, J., Duhig, T., Rothbard, J. & Burchell, J. A. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 263, 12820–12823 (1988).

    CAS  PubMed  Google Scholar 

  17. Ichige, K., Perey, L., Vogel, C. A., Buchegger, F. & Kufe, D. Expression of the DF3-P epitope in human ovarian carcinomas. Clin. Cancer Res. 1, 565–571 (1995).

    CAS  PubMed  Google Scholar 

  18. Finn, O. J. Immunological weapons acquired early in life win battles with cancer late in life. J. Immunol. 181, 1589–1592 (2008).

    CAS  PubMed  Google Scholar 

  19. Ligtenberg, M. J. L., Buijs, F., Vos, H. L. & Hilkens, J. Suppression of cellular aggregation by high levels of episialin. Cancer Res. 52, 223–232 (1992).

    Google Scholar 

  20. Kufe, D. Targeting the MUC1 oncoprotein: a tale of two proteins. Cancer Biol. Ther. 7, 81–84 (2008).

    CAS  PubMed  Google Scholar 

  21. Duraisamy, S., Ramasamy, S., Kharbanda, S. & Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 and MUC16. Gene 373, 28–34 (2006).

    CAS  PubMed  Google Scholar 

  22. Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422, 322–326 (2003).

    CAS  PubMed  Google Scholar 

  23. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Google Scholar 

  24. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    CAS  Google Scholar 

  25. Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 22, 207–235 (2006).

    CAS  PubMed  Google Scholar 

  26. Aranda, V. et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol. 8, 1220–1222 (2006).

    Google Scholar 

  27. Li, Y. et al. Heregulin targets γ-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 protein. Mol. Cancer Res. 1, 765–775 (2003).

    CAS  PubMed  Google Scholar 

  28. Ren, J. et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anti-cancer agents. Cancer Cell 5, 163–175 (2004). These findings provided the first evidence that overexpression of MUC1, as found in human malignancies, confers resistance to DNA damage-induced apoptosis and led to the demonstration that MUC1 also blocks death in response to oxidative stress, hypoxia and glucose deprivation (references 150, 151, 152, 153).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren, J. et al. MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene 25, 20–31 (2006).

    CAS  PubMed  Google Scholar 

  30. Carraway, K. L. et al. An intramembrane modulator of the ErbB2 receptor tyrosine kinase that potentiates neuregulin signaling. J. Biol. Chem. 274, 5263–5266 (1999).

    CAS  PubMed  Google Scholar 

  31. Carraway, K. L., Ramsauer, V. P. & Carraway, C. A. Glycoprotein contributions to mammary gland and mammary tumor structure and function: roles of adherens junctions, ErbBs and membrane MUCs. J. Cell Biochem. 96, 914–926 (2005).

    CAS  PubMed  Google Scholar 

  32. Carraway, C. A. & Carraway, K. L. Sequestration and segregation of receptor kinases in epithelial cells: implications for ErbB2 oncogenesis. Sci. STKE 2007, re3 (2007).

    PubMed  Google Scholar 

  33. Funes M., Miller J. K., Lai C., Carraway K. L. & Sweeney, C. The mucin Muc4 potentiates neuregulin signaling by increasing the cell-surface populations of ErbB2 and ErbB3. J. Biol. Chem. 281, 19310–19319 (2006).

    CAS  PubMed  Google Scholar 

  34. Chaturvedi, P. et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    CAS  Google Scholar 

  36. Pokutta, S. & Weis, W. I. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 23, 237–261 (2007).

    CAS  PubMed  Google Scholar 

  37. Nelson, W. J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem. Soc. Trans. 36, 149–155 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamamoto, M., Bharti, A., Li, Y. & Kufe, D. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 272, 12492–12494 (1997).

    CAS  PubMed  Google Scholar 

  39. Huang, L. et al. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol. Ther. 2, 702–706 (2003).

    CAS  PubMed  Google Scholar 

  40. Huang, L. et al. MUC1 oncoprotein blocks GSK3β-mediated phosphorylation and degradation of beta-catenin. Cancer Res. 65, 10413–10422 (2005). This work showed that the MUC1-C cytoplasmic domain is sufficient to induce anchorage-independent growth and tumorigenicity and that this effect is partly mediated by stabilization of β-catenin.

    CAS  PubMed  Google Scholar 

  41. Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Rev. Cancer 8, 387–398 (2008).

    CAS  Google Scholar 

  42. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    CAS  Google Scholar 

  43. Lang, T., Hansson, G. C. & Samuelsson, T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl Acad. Sci. USA. 104, 16209–16214 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gum Jr, J. R., Hicks, J. W., Toribara, N. W., Siddiki, B. & Kim, Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J. Biol. Chem. 269, 2440–2446 (1994).

    CAS  PubMed  Google Scholar 

  45. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA. 105, 15064–15069 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    CAS  PubMed  Google Scholar 

  47. Strober, W., Fuss, I. & Mannon, P. The fundamental basis of inflammatory bowel disease. J. Clin. Investigation 117, 514–521 (2007).

    CAS  Google Scholar 

  48. Feagins, L. A., Souza, R. F. & Spechler, S. J. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nature Rev. Gastroenterol. Hepatol. 6, 297–305 (2009).

    CAS  Google Scholar 

  49. Van Klinken, B. J., Van der Wal, J. W., Einerhand, A. W., Büller, H. A. & Dekker, J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut. 44, 387–393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Schwerbrock, N. M. et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm. Bowel Dis. 10, 811–823 (2004).

    PubMed  Google Scholar 

  52. van der Sluis, M. et al. Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice. Lab. Invest. 88, 634–642 (2008).

    CAS  PubMed  Google Scholar 

  53. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    CAS  PubMed  Google Scholar 

  54. Yang, K. et al. Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res. 68, 7313–7322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fijneman R. J. et al. Expression of Pla2g2a prevents carcinogenesis in Muc2-deficient mice. Cancer Sci. 99, 2113–2119 (2008).

    CAS  PubMed  Google Scholar 

  56. Leteurtre, E. et al. Relationships between mucinous gastric carcinoma, MUC2 expression and survival. World J. Gastroenterol. 12, 3324–3331 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takikita, M. et al. Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res. 69, 2950–2955 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirabayashi, K. et al. Alterations in mucin expression in ovarian mucinous tumors: immunohistochemical analysis of MUC2, MUC5AC, MUC6, and CD10 expression. Acta Histochem. Cytochem. 41, 15–21 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yonezawa, S., Goto, M., Yamada, N., Higashi, M. & Nomoto, M. Expression profiles of MUC1, MUC2, and MUC4 mucins in human neoplasms and their relationship with biological behavior. Proteomics 16, 3329–3341 (2008).

    Google Scholar 

  60. Song, S. et al. Galectin-3 modulates MUC2 mucin expression in human colon cancer cells at the level of transcription via AP-1 activation. Gastroenterology 129, 1581–1591 (2005).

    CAS  PubMed  Google Scholar 

  61. van der Sluis, M. et al. Forkhead box transcription factors Foxa1 and Foxa2 are important regulators of MUC2 mucin expression in intestinal epithelial cells. Biochem. Biophys. Res. Commun. 369, 1108–1113 (2008).

    CAS  PubMed  Google Scholar 

  62. Vincent, A. et al. Epigenetic regulation (DNA methylation, histone modifications) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells. Oncogene 26, 6566–6576 (2007).

    CAS  PubMed  Google Scholar 

  63. Perrais, M. et al. Aberrant expression of human mucin gene MUC5B in gastric carcinoma and cancer cells. Identification and regulation of a distal promoter. J. Biol. Chem. 276, 15386–15396 (2001).

    CAS  PubMed  Google Scholar 

  64. Sonora, C. et al. Immunohistochemical analysis of MUC5B apomucin expression in breast cancer and non-malignant breast tissues. J. Histochem. Cytochem. 54, 289–299 (2006).

    CAS  PubMed  Google Scholar 

  65. Guilmeau, S. et al. Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology 135, 849–860 (2008).

    CAS  PubMed  Google Scholar 

  66. Norkina, O., Burnett, T. G. & De Lisle, R. C. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect. Immun. 72, 6040–6049 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McAuley, J. L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindén, S. K., Florin, T. H. & McGuckin, M. A. Mucin dynamics in intestinal bacterial infection. PLoS One 3, e3952 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Ueno, K. et al. MUC1 mucin is a negative regulator of toll-like receptor signaling. Am. J. Respir. Cell. Mol. Biol. 38, 263–268 (2008).

    CAS  PubMed  Google Scholar 

  70. Beatty, P. L., Plevy, S. E., Sepulveda, A. R. & Finn, O. J. Cutting edge: transgenic expression of human MUC1 in IL-10−/− mice accelerates inflammatory bowel disease and progression to colon cancer. J. Immunol. 179, 735–739 (2007). This work and reference 67 provided evidence that MUC1 is important in the development of inflammatory bowel disease and colon cancer.

    CAS  PubMed  Google Scholar 

  71. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 10, 749–759 (2005).

    Google Scholar 

  72. Ahmad, R. et al. MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF−κB signaling. Nature Cell Biol. 9, 1419–1427 (2007). These findings demonstrated that MUC1-C activates the NF-κB pathway by interacting with IKKβ and led to the identification of a direct interaction between MUC1-C and the NF-κB family member RELA (reference 73).

    CAS  PubMed  Google Scholar 

  73. Ahmad, R. et al. MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res. 69, 7013–7021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vinall, L. E. et al. Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology 123, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  75. Kondo, S. et al. MUC1 induced by Epstein-Barr virus latent membrane protein 1 causes dissociation of the cell-matrix interaction and cellular invasiveness via STAT signaling. J. Virol. 81, 1554–1562 (2007).

    CAS  PubMed  Google Scholar 

  76. Merlo, G. et al. DF3 tumor-associated antigen gene is located in a region on chromosome 1q frequently altered in primary human breast cancer. Cancer Res. 49, 6966–6971 (1989).

    CAS  PubMed  Google Scholar 

  77. Kufe, D. Functional targeting of the MUC1 oncogen in human cancers. Cancer Biol. Ther. 8, 1199–1205 (2009).

    Google Scholar 

  78. Agata, N. et al. MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 68, 6136–6144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schroeder, J. A. et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 23, 5739–5747 (2004).

    CAS  PubMed  Google Scholar 

  80. Pochampalli, M. R., Bitler, B. G. & Schroeder, J. A. Transforming growth factorα-dependent cancer progression is modulated by MUC1. Cancer Res. 67, 6591–6598 (2007).

    CAS  PubMed  Google Scholar 

  81. Raina, D. et al. Direct targeting of the MUC1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res. 69, 5133–5141 (2009). This work represents the first demonstration that the MUC1-C cytoplasmic domain is a direct drug target and that inhibition of MUC1-C oligomerization is effective in inducing the complete regression of established human breast tumour xenografts in preclinical models. A subsequent report has demonstrated similar findings in MUC1-positive human prostate tumor xenografts (reference 82).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Joshi, M. D. et al. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol. Cancer Ther. 8, 3056–3065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Y., Liu, D., Chen, D., Kharbanda, S. & Kufe, D. Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22, 6107–6110 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramasamy, S. et al. The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol. Cell 27, 992–1004 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pochampalli, M. R., el Bejjani, R. M. & Schroeder, J. A. MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 26, 1693–1701 (2007).

    CAS  PubMed  Google Scholar 

  86. Kinlough, C. L. et al. Recycling of MUC1 is dependent on its palmitoylation. J. Biol. Chem. 281, 12112–12122 (2006).

    CAS  PubMed  Google Scholar 

  87. Leng, Y. et al. Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J. Biol. Chem. 282, 19321–19330 (2007).

    CAS  PubMed  Google Scholar 

  88. Zrihan-Licht, S., Baruch, A., Keydar, I. & Wreschner, D. H. Phosphorylation of the MUC1 breast cancer membrane proteins: cytokine receptor-like molecules. FEBS Lett. 356, 130–137 (1994).

    CAS  PubMed  Google Scholar 

  89. Ren, J. et al. MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol. Cancer Res. 4, 873–883 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Carson, D. The cytoplasmic tail of MUC1: a very busy place. Sci. Signal 1, pe35 (2008).

    PubMed  Google Scholar 

  91. Li, Y., Bharti, A., Chen, D., Gong, J. & Kufe, D. Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. Mol. Cell. Biol. 18, 7216–7224 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, Y., Kuwahara, H., Ren, J., Wen, G. & Kufe, D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β-catenin. J. Biol. Chem. 276, 6061–6064 (2001).

    CAS  PubMed  Google Scholar 

  93. Wei, X., Xu, H. & Kufe, D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7, 167–178 (2005). These findings demonstrate that MUC1-C interacts with p53, occupies promoters of p53 target genes and regulates p53-dependent transcription. Subsequent work demonstrated that MUC1-C interacts with oestrogen receptor-α (reference 125 ) and RELA (reference 73 ) on promoters of their target genes.

    CAS  PubMed  Google Scholar 

  94. Komatsu, M., Carraway, C., Fregien, N. L. & Carraway, K. L. Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. J. Biol. Chem. 272, 33245–3354 (1997).

    CAS  PubMed  Google Scholar 

  95. Komatsu, M., Tatum L, Altman, N. H., Carothers Carraway, C. A. & Carraway, K. L. Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctional anti-adhesive glycoprotein. Int. J. Cancer 87, 480–486 (2000).

    CAS  PubMed  Google Scholar 

  96. Price-Schiavi, S. A. et al. Rat MUC4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int. J. Cancer 99, 783–791 (2002).

    CAS  PubMed  Google Scholar 

  97. Komatsu, M., Yee, L. & Carraway, K. L. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res. 59, 2229–2236 (1999).

    CAS  PubMed  Google Scholar 

  98. Komatsu, M., Jepson S., Arango, M. E., Carothers Carraway, C. A. & Carraway, K. MUC4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20, 461–470 (2001). This work provided evidence that the interaction between MUC4 and ERBB2 promotes tumour growth and suppresses apoptosis, and led to the findings that expression of MUC4 is sufficient to induce transformation (reference 103 ) and that multiple mechanisms are responsible for the anti-apoptotic effect (reference 100).

    CAS  PubMed  Google Scholar 

  99. Chaturvedi, P. et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol. Cancer Res. 4, 309–320 (2007).

    Google Scholar 

  100. Workman, H. C., Sweeney, C. & Carraway, K. L. The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Res. 69, 2845–2852 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L. & Batra, S. K. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res. 64, 622–630 (2004).

    CAS  PubMed  Google Scholar 

  102. Moniaux, N. et al. Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br. J. Cancer 97, 345–357 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bafna, S. et al. MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res. 68, 9231–9238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Williams, S. J. et al. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276, 18327–18336 (2001).

    CAS  PubMed  Google Scholar 

  105. Walsh, M. D. et al. The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Hum. Pathol. 38, 883–892 (2007).

    CAS  PubMed  Google Scholar 

  106. Shimamura, T. et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 96, 265–273 (2005).

    CAS  PubMed  Google Scholar 

  107. Packer, L. M., Williams, S. J., Callaghan, S., Gotley, D. C. & McGuckin, M. A. Expression of the cell surface mucin gene family in adenocarcinomas. Int. J. Oncol. 25, 1119–1126 (2004).

    CAS  PubMed  Google Scholar 

  108. Chauhan, S. C. et al. Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod. Pathol. 19, 1386–1394 (2006).

    CAS  PubMed  Google Scholar 

  109. Chauhan, S. C. et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 69, 765–774 (2009).

    CAS  PubMed  Google Scholar 

  110. Bast, R. C. Jr et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 68, 1331–1337 (1981).

    PubMed  PubMed Central  Google Scholar 

  111. Yin, B. W. & Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem. 276, 27371–27375 (2001).

    CAS  PubMed  Google Scholar 

  112. O'Brien, T. J. et al. The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour Biol. 22, 348–66 (2001).

    CAS  PubMed  Google Scholar 

  113. Bast, R. C. Jr et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 309, 883–887 (1983). These findings and those in reference 110 identified MUC16 as an ovarian tumor-associated antigen and led to the use of the MUC16 plasma assay for the early detection of patients with ovarian cancer.

    PubMed  Google Scholar 

  114. Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004).

    CAS  PubMed  Google Scholar 

  115. Kaneko, O. et al. A binding domain on mesothelin for CA125/MUC16. J. Biol. Chem. 284, 3739–3749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Takahashi, T. et al. Expression of MUC-1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient. J. Immunol. 153, 2102–2109 (1994).

    CAS  PubMed  Google Scholar 

  117. Dyomin, V. G. et al. MUC1 is activated in a B-cell lymphoma by the t(1;14)(q21;q32) translocation and is rearranged and amplified in B-cell lymphoma subsets. Blood 95, 2666–2671 (2000).

    CAS  PubMed  Google Scholar 

  118. Brossart, P. et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 29, 6846–6850 (2001).

    Google Scholar 

  119. Fatrai, S. et al. Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Exp. Hematol. 36, 1254–1265 (2008).

    CAS  PubMed  Google Scholar 

  120. Kawano T, Ahmad R, Nogi H, Agata N, Anderson K, Kufe D. MUC1 oncoprotein promotes growth and survival of human multiple myeloma cells. Int. J. Oncology 33, 153–159 (2008).

    CAS  Google Scholar 

  121. Kawano, T. et al. MUC1 oncoprotein regulates Bcr-Abl stability and pathogenesis in chronic myelogenous leukemia cells. Cancer Res. 67, 11576–11584 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hayes, D. F. et al. Use of a murine monoclonal antibody for detection of circulating DF3 antigen levels in breast cancer patients. J. Clin. Invest. 75, 1671–1678 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rahn, J. J., Dabbagh, L., Pasdar, M. & Hugh, J. C. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 91, 1973–1982 (2001).

    CAS  PubMed  Google Scholar 

  124. Khodarev, N. et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res. 69, 2833–2837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol. Cell 21, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  126. Pitroda, S., Khodarev, N., Beckett, M., Kufe, D. & Weichselbaum, R. MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment Proc. Natl. Acad. Sci. USA 106, 5837–5841 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA 101, 811–816 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wreesmann, V. B. et al. Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. Cancer Res. 64, 3780–3789 (2004).

    CAS  PubMed  Google Scholar 

  129. Saitou, M. et al. MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J. Clin. Pathol. 58, 845–852 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nagata, K. et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J. Hepatobiliary Pancreat. Surg. 14, 243–254 (2007).

    PubMed  Google Scholar 

  131. Miyahara, N. et al. MUC4 interacts with ErbB2 in human gallbladder carcinoma: potential pathobiological implications. Eur. J. Cancer 44, 1048–1056 (2008).

    CAS  PubMed  Google Scholar 

  132. Giuntoli, R. L., Rodriguez, G. C., Whitaker, R. S., Dodge, R. & Voynow, J. A. Mucin gene expression in ovarian cancers. Cancer Res. 58, 5546–5550 (1998).

    CAS  PubMed  Google Scholar 

  133. Davidson, B., Baekelandt, M. & Shih, I. MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol. 35, 756–760 (2007).

    PubMed  Google Scholar 

  134. Rakha, E. A. et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod. Pathol. 18, 1295–1304 (2005).

    CAS  PubMed  Google Scholar 

  135. Kwon, K. Y. et al. MUC4 expression in non-small cell lung carcinomas: relationship to tumor histology and patient survival. Arch. Pathol. Lab. Med. 131, 593–598 (2007).

    CAS  PubMed  Google Scholar 

  136. Karg, A., Dinç, Z. A., Bas˛ok, O. & Uçvet, A. MUC4 expression and its relation to ErbB2 expression, apoptosis, proliferation, differentiation, and tumor stage in non-small cell lung cancer (NSCLC). Pathol. Res. Pract. 202, 577–583 (2006).

    PubMed  Google Scholar 

  137. Andrianifahanana, M. et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin. Cancer Res. 7, 4033–4040 (2001).

    CAS  PubMed  Google Scholar 

  138. Swartz, M. J. et al. MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am. J. Clin. Pathol. 117, 791–796 (2002).

    PubMed  Google Scholar 

  139. Jhala, N. et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am. J. Clin. Pathol. 126, 572–579 (2006).

    CAS  PubMed  Google Scholar 

  140. Shibahara, H. et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology 39, 220–229 (2004).

    CAS  PubMed  Google Scholar 

  141. Tamada, S. et al. MUC4 is a novel prognostic factor of extrahepatic bile duct carcinoma. Clin. Cancer Res. 12, 4257–4264 (2006).

    CAS  PubMed  Google Scholar 

  142. Llinares, K. et al. Diagnostic value of MUC4 immunostaining in distinguishing epithelial mesothelioma and lung adenocarcinoma. Mod. Pathol. 2, 150–157 (2004).

    Google Scholar 

  143. Rustin, G. J. et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin. Cancer Res. 10, 3919–3926 (2004).

    CAS  PubMed  Google Scholar 

  144. Zhang, Z. et al. Combining multiple serum tumor markers improves detection of stage I epithelial ovarian cancer. Gynecol. Oncol. 107, 526–531 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bast, R. C. Jr, Hennessy, B. & Mills, G. B. The biology of ovarian cancer: new opportunities for translation. Nature Rev. Cancer 9, 415–428 (2009).

    CAS  Google Scholar 

  146. Rubinstein, D. B. et al. The MUC1 oncoprotein as a functional target: immunotoxin binding to alpha/beta junction mediates cell killing. Int. J. Cancer 124, 46–54 (2009).

    CAS  PubMed  Google Scholar 

  147. Chen, Y. et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res. 67, 4924–4932 (2007).

    CAS  PubMed  Google Scholar 

  148. Arlen, P. M., Gulley, J. L., Madan, R. A., Hodge, J. W. & Schlom, J. Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit. Rev. Immunol. 27, 451–462 (2007).

    CAS  PubMed  Google Scholar 

  149. Bitler, B. et al. Intracellular MUC1 peptides inhibit cancer progression. Clin. Cancer Res. 15, 100–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yin, L. & Kufe, D. Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J. Biol. Chem. 278, 35458–35464 (2003).

    CAS  PubMed  Google Scholar 

  151. Yin, L., Huang, L. & Kufe, D. MUC1 oncoprotein activates the FOXO3a transcription factor in a survival response to oxidative stress. J. Biol. Chem. 279, 45721–45727 (2004).

    CAS  PubMed  Google Scholar 

  152. Yin, L., Kharbanda, S. & Kufe, D. Mucin 1 oncoprotein blocks hypoxia-inducible factor 1α activation in a survival response to hypoxia. J. Biol. Chem. 282, 257–266 (2007).

    CAS  PubMed  Google Scholar 

  153. Yin, L., Kharbanda, S. & Kufe, D. MUC1 oncoprotein promotes autophagy in a survival response to glucose deprivation. Int. J. Oncol. 34, 1691–1699 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.W.K. is supported by National Cancer Institute grants CA97098, CA42802 and CA100707.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.W.K. is a founder of Genus Oncology and a consultant to the company.

Glossary

Apical–basal polarity

Epithelial cells are polarized, with an apical membrane that faces the external environment or a lumen and is opposite the basolateral membrane, which functions in cell–cell interactions and contacts the basement membrane.

Glycosylation

The enzymatic process of attaching oligosaccharides, for example O-N-acetylgalactosamine (O-GalNAc), to the hydroxy oxygen of serine and threonine side chains for the generation of O-linked glycans.

Glycocalyx

A carbohydrate layer on the surface of cells comprised of oligosaccharide side chains of glycoprotein and glycolipid components in the cell membrane.

Von Willebrand factor

VWF. An adhesive glycoprotein that functions in attaching platelets to the vessel wall.

ERBB2

A receptor tyrosine kinase that functions as a heterodimerization partner with other Erbb family members. It is overexpressed in 25–30% of human breast cancers and is the target of the monoclonal antibody trastuzumab (Herceptin).

Heregulin

The ERBB3 receptor, which lacks intrinsic kinase activity, is activated by heregulin (also known as neuregulin-1), and ERBB3 in turn forms heterodimers with other Erbb family members, such as ERBB2. Heregulin also functions as a ligand for the ERBB4 receptor.

Commensal bacteria

The human digestive tract is normally colonized by 1013 bacteria, known as commensal bacteria, which exist in an ecosystem without the activation of innate and adaptive immune responses, partly owing to the mucin barrier.

Goblet cell

A specialized cell with apical granules in the gastrointestinal and respiratory tracts that is dedicated to the production of secreted mucins, such as MUC2.

Helicobacter pylori

A Gram-negative microorganism that can colonize the human stomach despite the low pH. H. pylori penetrates the gastric mucosal barrier and attaches to the gastric epithelium, where it induces an inflammatory response.

Epstein-Barr virus

EBV. A herpes virus that is closely associated with the development of nasopharyngeal carcinoma, Burkitt's lymphoma and Hodgkin's lymphoma. Latent membrane protein 1 is the major EBV oncoprotein that induces MUC1 expression.

BCR–ABL

A fusion protein that results from the reciprocal translocation between chromosome 9 and chromosome 22 (t(9;22)(q34;q11)) and is responsible for the induction of chronic myelogenous leukaemia.

Tamoxifen

A non-steroidal anti-oestrogen that targets the oestrogen receptor and increases disease-free and overall survival in breast cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kufe, D. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9, 874–885 (2009). https://doi.org/10.1038/nrc2761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing