Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

20 years studying p53 functions in genetically engineered mice

This article has been updated

Abstract

Cell and molecular biological studies of p53 functions over the past 30 years have been complemented in the past 20 years by studies that use genetically engineered mice. As expected, mice that have mutant Trp53 alleles usually develop cancers of various types more rapidly than their counterparts that have wild-type Trp53 genes. These mouse studies have been instrumental in providing important new insights into p53 tumour suppressor function. Such studies have been facilitated by the development of increasingly sophisticated genetic engineering approaches, which allow the more precise manipulation of p53 structure and function in a mammalian model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour phenotypes of p53-deficient mice.
Figure 2: Gain-of-function and dominant-negative activities of mutant p53.
Figure 3: Different genetically engineered p53 mutant mice show an array of cancer suppression phenotypes.

Change history

  • 01 October 2009

    In the version of this article initially published online, in page 8, the sentence "For example, mammary gland–specific Wap1 (also known as Wfdc5)–Cre mice" was incorrect and should be "For example, mammary gland–specific Wap–Cre mice". This error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Palmiter, R. D. & Brinster, R. L. Germ-line transformation of mice. Annu. Rev. Genet. 20, 465–499 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Bradley, A., Ramirez-Solis, R., Zheng, H., Hasty, P. & Davis, A. Genetic manipulation of the mouse via gene targeting in embryonic stem cells. Ciba Found. Symp. 165, 256–69 (1992).

    CAS  PubMed  Google Scholar 

  7. Lavigueur, A. et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol. 9, 3982–3991 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W. & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Varley, J. M. Germline TP53 mutations and Li–Fraumeni syndrome. Hum. Mutat. 21, 313–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bachinski, L. L. et al. Genetic mapping of a third Li–Fraumeni syndrome predisposition locus to human chromosome 1q23. Cancer Res. 65, 427–431 (2005).

    CAS  PubMed  Google Scholar 

  12. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Tsukada, T. et al. Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8, 3313–3322 (1993).

    CAS  PubMed  Google Scholar 

  14. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Purdie, C. A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  16. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Matzuk, M. M., Finegold, M. J., Su, J. G., Hsueh, A. J. & Bradley, A. α-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5, 931–936 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Marine, J. C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 5 Jun 2009 (doi: 10.1038/cdd.2009.68).

  24. de Rozieres, S., Maya, R., Oren, M. & Lozano, G. The loss of mdm2 induces p53-mediated apoptosis. Oncogene 19, 1691–1697 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Donehower, L. A. The p53-deficient mouse: a model for basic and applied cancer studies. Semin. Cancer Biol. 7, 269–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Venkatachalam, S. et al. Is p53 haploinsufficient for tumor suppression? Implications for the p53+/− mouse model in carcinogenicity testing. Toxicol. Pathol. 29, 147–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Knudson, A. G. Jr, Hethcote, H. W. & Brown, B. W. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc. Natl Acad. Sci. USA 72, 5116–5120 (1975).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Knudson, A. G. Jr. Genetics of human cancer. Annu. Rev. Genet. 20, 231–251 (1986).

    Article  PubMed  Google Scholar 

  29. Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17, 4657–4667 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blackburn, A. C. et al. Loss of heterozygosity occurs via mitotic recombination in Trp53+/− mice and associates with mammary tumor susceptibility of the BALB/c strain. Cancer Res. 64, 5140–5147 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Birch, J. M. et al. Cancer phenotype correlates with constitutional TP53 genotype in families with the Li–Fraumeni syndrome. Oncogene 17, 1061–1068 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Attardi, L. D. & Donehower, L. A. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat. Res. 576, 4–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lozano, G. The oncogenic roles of p53 mutants in mouse models. Curr. Opin. Genet. Dev. 17, 66–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, T. M. & Attardi, L. D. Dissecting p53 tumor suppressor function in vivo through the analysis of genetically modified mice. Cell Death Differ. 13, 902–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123, 1001–1011 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  Google Scholar 

  39. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).

    Article  CAS  Google Scholar 

  40. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Dittmer, D. et al. Gain of function mutations in p53. Nature Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, G. et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc. Natl Acad. Sci. USA 97, 4174–4179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ljungman, M. Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2, 208–225 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Eischen, C. M. & Lozano, G. p53 and MDM2: antagonists or partners in crime? Cancer Cell 15, 161–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. McDonnell, T. J. et al. Loss of one but not two mdm2 null alleles alters the tumour spectrum in p53 null mice. J. Pathol. 188, 322–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Polager, S. & Ginsberg, D. p53 and E2f: partners in life and death. Nature Rev. Cancer 9, 738–748 (2009).

    Article  CAS  Google Scholar 

  52. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M. & Smith, J. R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211, 90–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Barboza, J. A., Liu, G., Ju, Z., El-Naggar, A. K. & Lozano, G. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl Acad. Sci. USA 103, 19842–19847 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iwakuma, T. & Lozano, G. Crippling p53 activities via knock-in mutations in mouse models. Oncogene 26, 2177–2184 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer 6, 909–923 (2006).

    Article  CAS  Google Scholar 

  60. Sluss, H. K., Armata, H., Gallant, J. & Jones, S. N. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell. Biol. 24, 976–984 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Armata, H. L., Garlick, D. S. & Sluss, H. K. The ataxia telangiectasia-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res. 67, 11696–11703 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. MacPherson, D. et al. Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J. 23, 3689–3699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chao, C., Herr, D., Chun, J. & Xu, Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J. 25, 2615–2622 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Cruz, A. B. et al. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors. Cancer Res. 68, 683–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Berman, S. D. et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc. Natl Acad. Sci. USA 105, 11851–11856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lengner, C. J. et al. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling. J. Cell. Biol. 172, 909–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, S. C. et al. Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res. 64, 3525–3532 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Walkley, C. R. et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 22, 1662–1676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hinkal, G. W., Parikh, N. & Donehower, L. A. Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS ONE 4, e6654 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wijnhoven, S. W. et al. Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res. 65, 8166–8173 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Christophorou, M. A. et al. Temporal dissection of p53 function in vitro and in vivo. Nature Genet. 37, 718–726 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Nicol, C. J., Harrison, M. L., Laposa, R. R., Gimelshtein, I. L. & Wells, P. G. A teratologic suppressor role for p53 in benzo(a)pyrene-treated transgenic p53-deficient mice. Nature Genet. 10, 181–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y. & Kondo, S. p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nature Med. 2, 577–580 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, B. Involvement of p53-dependent apoptosis in radiation teratogenesis and in the radioadaptive response in the late organogenesis of mice. J. Radiat. Res. 42, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Finch, R. A. et al. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 62, 3221–3225 (2002).

    CAS  PubMed  Google Scholar 

  84. Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kay, C., Jeyendran, R. S. & Coulam, C. B. p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod. Biomed. Online 13, 492–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hu, W., Feng, Z., Atwal, G. S. & Levine, A. J. p53: a new player in reproduction. Cell Cycle 7, 848–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. de Vries, A. et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl Acad. Sci. USA 99, 2948–2953 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    CAS  Google Scholar 

  91. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Tomas-Loba, A. et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferbeyre, G. & Lowe, S. W. The price of tumour suppression? Nature 415, 26–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nature Rev. Mol. Cell Biol. 8, 715–722 (2007).

    Article  CAS  Google Scholar 

  96. Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/−p16 Ink4A−/−p19 Arf−/− multipotent progenitors. Nature 453, 228–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gatza, C., Moore, L., Dumble, M. & Donehower, L. A. Tumor suppressor dosage regulates stem cell dynamics during aging. Cell Cycle 6, 52–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Bourdon, J. C. p53 Family isoforms. Curr. Pharm. Biotechnol. 8, 332–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer 7, 165–168 (2007).

    Article  CAS  Google Scholar 

  103. Mills, A. A. p63: oncogene or tumor suppressor? Curr. Opin. Genet. Dev. 16, 38–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Rosenbluth, J. M. & Pietenpol, J. A. The jury is in: p73 is a tumor suppressor after all. Genes Dev. 22, 2591–2595 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Keyes, W. M. et al. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 19, 1986–1999 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keyes, W. M. et al. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc. Natl Acad. Sci. USA 103, 8435–8440 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Tomasini, R. et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677–2691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tomasini, R., Mak, T. W. & Melino, G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 18, 244–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Kuperwasser, C. et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li—Fraumeni syndrome. Am. J. Pathol. 157, 2151–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harvey, M., McArthur, M. J., Montgomery, C. A. Jr, Bradley, A. & Donehower, L. A. Genetic background alters the spectrum of tumors that develop in p53- deficient mice. FASEB J. 7, 938–943 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Bruins, W. et al. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol. Cell. Biol. 24, 8884–8894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Johnson, T. M., Hammond, E. M., Giaccia, A. & Attardi, L. D. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nature Genet. 37, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Nister, M. et al. p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 24, 3563–3573 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Chao, C. et al. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol. Cell. Biol. 26, 6859–6869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Krummel, K. A., Lee, C. J., Toledo, F. & Wahl, G. M. The C-terminal lysines fine-tune p53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl Acad. Sci. USA 102, 10188–10193 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luo, J. L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20, 320–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Johnson, T. M., Meade, K., Pathak, N., Marques, M. R. & Attardi, L. D. Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence. Proc. Natl Acad. Sci. USA 105, 1215–1220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet. 29, 418–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Ghebranious, N. & Sell, S. The mouse equivalent of the human p53ser249 mutation p53ser246 enhances aflatoxin hepatocarcinogenesis in hepatitis B surface antigen transgenic and p53 heterozygous null mice. Hepatology 27, 967–973 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Li, B., Rosen, J. M., McMenamin-Balano, J., Muller, W. J. & Perkins, A. S. neu/ERBB2 cooperates with p53–172H during mammary tumorigenesis in transgenic mice. Mol. Cell. Biol. 17, 3155–3163 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, B. et al. Preferential overexpression of a 172Arg-->Leu mutant p53 in the mammary gland of transgenic mice results in altered lobuloalveolar development. Cell Growth Differ. 5, 711–721 (1994).

    CAS  PubMed  Google Scholar 

  126. Hernandez, I. et al. Prostate-specific expression of p53R172L differentially regulates p21, Bax, and mdm2 to inhibit prostate cancer progression and prolong survival. Mol. Cancer Res. 1, 1036–1047 (2003).

    CAS  PubMed  Google Scholar 

  127. Duan, W. et al. Lung-specific expression of human mutant p53–273H is associated with a high frequency of lung adenocarcinoma in transgenic mice. Oncogene 21, 7831–7838 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Klein, M. A. et al. Reduced latency but no increased brain tumor penetrance in mice with astrocyte specific expression of a human p53 mutant. Oncogene 19, 5329–5337 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Godley, L. A. et al. Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev. 10, 836–850 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Gillet, R. et al. The consequence of p53 overexpression for liver tumor development and the response of transformed murine hepatocytes to genotoxic agents. Oncogene 19, 3498–3507 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Symonds, H. et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Howes, K. A. et al. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev. 8, 1300–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lawrence A. Donehower or Guillermina Lozano.

Related links

Related links

DATABASES

NCI nature protein interaction Database (PID)

ARF

OMIM

Li-Fraumeni syndrome

FURTHER INFORMATION

Lawrence a. Donehower's homepage

Guillermina Lozano's homepage

IARC p53 mouse model database

IARC TP53 mutation database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donehower, L., Lozano, G. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9, 831–841 (2009). https://doi.org/10.1038/nrc2731

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing