Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new MAFia in cancer

Key Points

  • Maf proteins are bZIP transcription factors of the AP1 superfamily, like JUN and FOS.

  • During development, Maf proteins are involved early during tissue specification and later in terminal differentiation.

  • Large Maf proteins, MAFA, MAFB and MAF, are bona fide oncogenes, as demonstrated in tissue culture and animal models and in human cancer.

  • In humans, the large Maf are overexpressed in 50% of multiple myelomas and 60% of angioimmunoblastic T-cell lymphomas. In particular, MAF, MAFB and MAFA genes are translocated to the immunoglobulin heavy chain locus in 8–10% of multiple myelomas.

  • The transforming activity of large Maf proteins is context-dependent and they can occasionally display tumour suppressor-like activity in specific cellular settings.

  • Their transforming activity relies on overexpression, and is regulated by post-translational modifications, notably phosphorylation.

  • In several biological settings, large Maf induce deregulation of cell cycle, cell migration and cell–cell interactions through induction of expression of cyclin D2, ARK5 and integrin β7, respectively.

  • The oncogenic activity of Maf may result, in part, from the acquisition of novel functions.

  • A striking characteristic of Maf proteins in oncogenesis is their ability to enhance the interaction between tumour cells and stromal cells.

Abstract

Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer — overexpression of the large Maf genes promotes the development of multiple myeloma — they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maf proteins, members of the AP1 superfamily.
Figure 2: Post-translational modifications regulate large Maf biochemical activities.
Figure 3: A model for Maf functions in cancer.

Similar content being viewed by others

Gian Luca Rampioni Vinciguerra, Marina Capece, … Carlo M. Croce

References

  1. Maki, Y., Bos, T. J., Davis, C., Starbuck, M. & Vogt, P. K. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl Acad. Sci. USA 84, 2848–2852 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K. T. & Kawai, S. v-maf, a viral oncogene that encodes a “leucine zipper” motif. Proc. Natl Acad. Sci. USA 86, 7711–7715 (1989). A founding paper reporting the isolation of the first member of the Maf family and its oncogenic activity in vivo .

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361–374 (2007).

    CAS  Google Scholar 

  4. Chesi, M. et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91, 4457–4463 (1998). First demonstration of the involvement of a Maf gene in human cancer through translocation.

    CAS  PubMed  Google Scholar 

  5. Kawai, S. et al. Isolation of the avian transforming retrovirus, AS42, carrying the v-maf oncogene and initial characterization of its gene product. Virology 188, 778–784 (1992).

    CAS  PubMed  Google Scholar 

  6. Motohashi, H. & Yamamoto, M. Carcinogenesis and transcriptional regulation through Maf recognition elements. Cancer Sci. 98, 135–139 (2007).

    CAS  PubMed  Google Scholar 

  7. Blank, V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J. Mol. Biol. 376, 913–925 (2008).

    CAS  PubMed  Google Scholar 

  8. Benkhelifa, S. et al. mafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells. Oncogene 17, 247–254 (1998).

    CAS  PubMed  Google Scholar 

  9. Ogino, H. & Yasuda, K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115–118 (1998).

    CAS  PubMed  Google Scholar 

  10. Kataoka, K., Fujiwara, K. T., Noda, M. & Nishizawa, M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol. Cell. Biol. 14, 7581–7591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Swaroop, A. et al. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc. Natl Acad. Sci. USA 89, 266–270 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujiwara, K. T., Kataoka, K. & Nishizawa, M. Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371–2380 (1993).

    CAS  PubMed  Google Scholar 

  13. Kataoka, K. et al. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol. Cell. Biol. 15, 2180–2190 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nature Rev. Cancer 3, 859–868 (2003).

    CAS  Google Scholar 

  15. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nature Cell Biol. 4, E131–136 (2002).

    CAS  PubMed  Google Scholar 

  16. Vinson, C., Acharya, A. & Taparowsky, E. J. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim. Biophys. Acta 1759, 4–12 (2006).

    CAS  PubMed  Google Scholar 

  17. Blank, V. & Andrews, N. C. The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437–441 (1997).

    CAS  PubMed  Google Scholar 

  18. Dlakic, M., Grinberg, A. V., Leonard, D. A. & Kerppola, T. K. DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins. EMBO J. 20, 828–840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerppola, T. K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149–3158 (1994).

    CAS  PubMed  Google Scholar 

  20. Kusunoki, H. et al. Solution structure of the DNA-binding domain of MafG. Nature Struct. Biol. 9, 252–256 (2002).

    CAS  PubMed  Google Scholar 

  21. Kataoka, K. Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. J. Biochem. 141, 775–781 (2007).

    CAS  PubMed  Google Scholar 

  22. Yang, Y. & Cvekl, A. Large Maf transcription factors: cousins of AP-1 proteins and important regulators of cellular differentiation. J. Biol. Med. 23, 2–11 (2007).

    CAS  Google Scholar 

  23. Yoshida, T., Ohkumo, T., Ishibashi, S. & Yasuda, K. The 5′-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic Acids Res. 33, 3465–3478 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Q., Dowhan, D. H., Liang, D., Moore, D. D. & Overbeek, P. A. CREB-binding protein/p300 co-activation of crystallin gene expression. J. Biol. Chem. 277, 24081–24089 (2002).

    CAS  PubMed  Google Scholar 

  25. Rocques, N. et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol. Cell 28, 584–597 (2007). This work demonstrates that GSK3-mediated phosphorylation is required for Maf transforming activity and for the establishment of a gene expression programme involved in extracellular remodelling and invasion.

    CAS  PubMed  Google Scholar 

  26. Friedman, J. S. et al. The minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding protein. J. Biol. Chem. 279, 47233–47241 (2004).

    CAS  PubMed  Google Scholar 

  27. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J. D. & Yamamoto, M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1–12 (2002).

    CAS  PubMed  Google Scholar 

  28. Kataoka, K., Noda, M. & Nishizawa, M. Transactivation activity of Maf nuclear oncoprotein is modulated by Jun, Fos and small Maf proteins. Oncogene 12, 53–62 (1996).

    CAS  PubMed  Google Scholar 

  29. Motohashi, H., Katsuoka, F., Shavit, J. A., Engel, J. D. & Yamamoto, M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103, 865–875 (2000).

    CAS  PubMed  Google Scholar 

  30. Coolen, M. et al. Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans. Dev. Genes Evol. 215, 327–339 (2005).

    CAS  PubMed  Google Scholar 

  31. Lecoin, L., Sii-Felice, K., Pouponnot, C., Eychene, A. & Felder-Schmittbuhl, M. P. Comparison of maf gene expression patterns during chick embryo development. Gene Expr. Patterns 4, 35–46 (2004).

    CAS  PubMed  Google Scholar 

  32. Liu, Q., Ji, X., Breitman, M. L., Hitchcock, P. F. & Swaroop, A. Expression of the bZIP transcription factor gene Nrl in the developing nervous system. Oncogene 12, 207–211 (1996).

    CAS  PubMed  Google Scholar 

  33. Sevinsky, J. R., Whalen, A. M. & Ahn, N. G. Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol. Cell. Biol. 24, 4534–4545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakai, M. et al. Regulation of c-maf gene expression by Pax6 in cultured cells. Nucleic Acids Res. 29, 1228–1237 (2001).

    CAS  Google Scholar 

  35. Huang, K., Serria, M. S., Nakabayashi, H., Nishi, S. & Sakai, M. Molecular cloning and functional characterization of the mouse mafB gene. Gene 242, 419–426 (2000).

    CAS  PubMed  Google Scholar 

  36. Raum, J. C. et al. FoxA2, Nkx2.2, and PDX-1 regulate islet β-cell-specific mafA expression through conserved sequences located between base pairs −8118 and −7750 upstream from the transcription start site. Mol. Cell. Biol. 26, 5735–5743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cordes, S. P. & Barsh, G. S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    CAS  PubMed  Google Scholar 

  38. Benkhelifa, S. et al. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol. Cell. Biol. 21, 4441–4452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, S. I., Aramata, S., Yasuda, K. & Kataoka, K. MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol. Cell. Biol. 27, 6593–6605 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ochi, H., Ogino, H., Kageyama, Y. & Yasuda, K. The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J. Biol. Chem. 278, 537–544 (2003).

    CAS  PubMed  Google Scholar 

  41. Sii-Felice, K. et al. MafA transcription factor is phosphorylated by p38 MAP kinase. FEBS Lett. 579, 3547–3554 (2005).

    CAS  PubMed  Google Scholar 

  42. Bessant, D. A. et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nature Genet. 21, 355–356 (1999).

    CAS  PubMed  Google Scholar 

  43. Tillmanns, S. et al. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol. Cell. Biol. 27, 5554–5564 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kataoka, K., Nishizawa, M. & Kawai, S. Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J. Virol. 67, 2133–2141 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishizawa, M., Kataoka, K. & Vogt, P. K. MafA has strong cell transforming ability but is a weak transactivator. Oncogene 22, 7882–7890 (2003).

    PubMed  Google Scholar 

  46. Pouponnot, C. et al. Cell context reveals a dual role for Maf in oncogenesis. Oncogene 25, 1299–1310 (2006). This study shows that Maf transforming activity is context-dependent and in some settings Maf proteins can also display anti-oncogenic activity.

    CAS  PubMed  Google Scholar 

  47. Morito, N. et al. Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer Res. 66, 812–819 (2006). This study reports the unique demonstration of MAF oncogenic activity in a transgenic mouse model and MAF implication in AITL in humans.

    CAS  PubMed  Google Scholar 

  48. Murakami, Y. I. et al. c-Maf expression in angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 31, 1695–1702 (2007).

    PubMed  Google Scholar 

  49. Hurt, E. M. et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5, 191–199 (2004). A landmark paper showing that MAF is causative of MM pathology and increases the interaction between tumour cells and stroma.

    CAS  PubMed  Google Scholar 

  50. Kataoka, K., Shioda, S., Yoshitomo-Nakagawa, K., Handa, H. & Nishizawa, M. Maf and Jun nuclear oncoproteins share downstream target genes for inducing cell transformation. J. Biol. Chem. 276, 36849–36856 (2001).

    CAS  PubMed  Google Scholar 

  51. Mattioli, M. et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 24, 2461–2473 (2005).

    CAS  PubMed  Google Scholar 

  52. Suzuki, A. et al. ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene 24, 6936–6944 (2005).

    CAS  PubMed  Google Scholar 

  53. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020–2028 (2006). Identification of a Maf signature by gene expression profiling on a large cohort of patients with MM.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Monteiro, P. et al. AhR- and c-maf-dependent induction of β7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem. Biophys. Res. Commun. 358, 442–448 (2007).

    CAS  PubMed  Google Scholar 

  55. Kuehl, W. M. & Bergsagel, P. L. Multiple myeloma: evolving genetic events and host interactions. Nature Rev. Cancer 2, 175–187 (2002). A comprehensive review of MM pathogenesis.

    CAS  Google Scholar 

  56. Chng, W. J., Glebov, O., Bergsagel, P. L. & Kuehl, W. M. Genetic events in the pathogenesis of multiple myeloma. Best Pract. Res. Clin. Haematol. 20, 571–596 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G. & Anderson, K. C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Rev. Cancer 7, 585–598 (2007).

    CAS  Google Scholar 

  58. Kuehl, W. M. & Bergsagel, P. L. Early genetic events provide the basis for a clinical classification of multiple myeloma. Hematol. Am. Soc. Hematol. Educ. Program 346–352 (2005).

  59. Boersma-Vreugdenhil, G. R. et al. The recurrent translocation t(14;20)(q32;q12) in multiple myeloma results in aberrant expression of MAFB: a molecular and genetic analysis of the chromosomal breakpoint. Br. J. Haematol. 126, 355–363 (2004).

    CAS  PubMed  Google Scholar 

  60. Hanamura, I. et al. Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations. Jpn. J. Cancer Res. 92, 638–644 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanamura, I. et al. Identification of three novel chromosomal translocation partners involving the immunoglobulin loci in newly diagnosed myeloma and human myeloma cell lines. Blood 106, abstract 1552 (2005).

    Google Scholar 

  62. Avet-Loiseau, H. et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 99, 2185–2191 (2002).

    CAS  PubMed  Google Scholar 

  63. Zhan, F. et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 109, 1692–1700 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bergsagel, P. L. et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106, 296–303 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Moreaux, J. et al. TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. Haematologica 92, 803–811 (2007).

    CAS  PubMed  Google Scholar 

  66. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shaughnessy, J. D. Jr et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109, 2276–2284 (2007).

    CAS  PubMed  Google Scholar 

  68. Yaccoby, S. et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109, 2106–2111 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Robbiani, D. F. et al. Osteopontin dysregulation and lytic bone lesions in multiple myeloma. Hematol. Oncol. 25, 16–20 (2007).

    CAS  PubMed  Google Scholar 

  70. Reza, H. M., Nishi, H., Kataoka, K., Takahashi, Y. & Yasuda, K. L-Maf regulates p27kip1 expression during chick lens fiber differentiation. Differentiation 75, 737–744 (2007).

    CAS  PubMed  Google Scholar 

  71. Ring, B. Z., Cordes, S. P., Overbeek, P. A. & Barsh, G. S. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307–317 (2000).

    CAS  PubMed  Google Scholar 

  72. Yoshida, K. et al. Proliferation in the posterior region of the lens of c-maf−/− mice. Curr. Eye Res. 23, 116–119 (2001).

    CAS  PubMed  Google Scholar 

  73. Suzuki, A. et al. ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol. Cell. Biol. 24, 3526–3535 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kienast, J. & Berdel, W. E. c-maf in multiple myeloma: an oncogene enhancing tumor-stroma interactions. Cancer Cell 5, 109–110 (2004).

    CAS  Google Scholar 

  75. Li, M. A., Alls, J. D., Avancini, R. M., Koo, K. & Godt, D. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nature Cell Biol. 5, 994–1000 (2003).

    CAS  PubMed  Google Scholar 

  76. Zhang, C. et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell. Biol. 25, 4969–4976 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  78. Cohen, P. & Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nature Rev. Drug Discov. 3, 479–487 (2004).

    CAS  Google Scholar 

  79. Mao, X. et al. A chemical biology screen identifies glucocorticoids that regulate c-maf expression by increasing its proteasomal degradation through up-regulation of ubiquitin. Blood 110, 4047–4054 (2007).

    CAS  PubMed  Google Scholar 

  80. Yoh, K. et al. Transgenic over-expression of MafK suppresses T cell proliferation and function in vivo. Genes Cells 6, 1055–1066 (2001).

    CAS  PubMed  Google Scholar 

  81. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007).

    CAS  PubMed  Google Scholar 

  82. Dhakshinamoorthy, S. & Jaiswal, A. K. c-Maf negatively regulates ARE-mediated detoxifying enzyme genes expression and anti-oxidant induction. Oncogene 21, 5301–5312 (2002).

    CAS  PubMed  Google Scholar 

  83. Kataoka, K., Yoshitomo-Nakagawa, K., Shioda, S. & Nishizawa, M. A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities. J. Biol. Chem. 276, 819–826 (2001).

    CAS  PubMed  Google Scholar 

  84. van Dam, H. et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev. 12, 1227–1239 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hegde, S. P., Zhao, J., Ashmun, R. A. & Shapiro, L. H. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94, 1578–1589 (1999).

    CAS  PubMed  Google Scholar 

  86. Peng, S., Lalani, S., Leavenworth, J. W., Ho, I. C. & Pauza, M. E. c-Maf interacts with c-Myb to down-regulate Bcl-2 expression and increase apoptosis in peripheral CD4 cells. Eur. J. Immunol. 37, 2868–2880 (2007).

    CAS  PubMed  Google Scholar 

  87. Hale, T. K. et al. Maf transcriptionally activates the mouse p53 promoter and causes a p53-dependent cell death. J. Biol. Chem. 275, 17991–17999 (2000).

    CAS  PubMed  Google Scholar 

  88. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  89. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    CAS  PubMed  Google Scholar 

  90. Mueller, M. M. & Fusenig, N. E. Friends or foes — bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    CAS  Google Scholar 

  91. Kerppola, T. K. & Curran, T. Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 9, 675–684 (1994).

    CAS  PubMed  Google Scholar 

  92. Matsushima-Hibiya, Y., Nishi, S. & Sakai, M. Rat maf-related factors: the specificities of DNA binding and heterodimer formation. Biochem. Biophys. Res. Commun. 245, 412–418 (1998).

    CAS  PubMed  Google Scholar 

  93. Newman, J. R. & Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097–2101 (2003).

    CAS  PubMed  Google Scholar 

  94. Mechta-Grigoriou, F., Giudicelli, F., Pujades, C., Charnay, P. & Yaniv, M. c-jun regulation and function in the developing hindbrain. Dev. Biol. 258, 419–431 (2003).

    CAS  PubMed  Google Scholar 

  95. Blanchi, B. et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nature Neurosci. 6, 1091–1100 (2003).

    CAS  PubMed  Google Scholar 

  96. Aziz, A. et al. Development of macrophages with altered actin organization in the absence of MafB. Mol. Cell. Biol. 26, 6808–6818 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Moriguchi, T. et al. MafB is essential for renal development and F4/80 expression in macrophages. Mol. Cell. Biol. 26, 5715–5727 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sadl, V. et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev. Biol. 249, 16–29 (2002).

    CAS  PubMed  Google Scholar 

  99. Artner, I. et al. MafB is required for islet β cell maturation. Proc. Natl Acad. Sci. USA 104, 3853–3858 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nishimura, W. et al. Preferential reduction of beta cells derived from Pax6–MafB pathway in MafB deficient mice. Dev. Biol. 314, 443–456 (2008).

    CAS  PubMed  Google Scholar 

  101. Kawauchi, S. et al. Regulation of lens fiber cell differentiation by transcription factor c-Maf. J. Biol. Chem. 274, 19254–19260 (1999).

    CAS  PubMed  Google Scholar 

  102. Kim, J. I., Li, T., Ho, I. C., Grusby, M. J. & Glimcher, L. H. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc. Natl Acad. Sci. USA 96, 3781–3785 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. MacLean, H. E. et al. Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev. Biol. 262, 51–63 (2003).

    CAS  PubMed  Google Scholar 

  104. Mears, A. J. et al. Nrl is required for rod photoreceptor development. Nature Genet. 29, 447–452 (2001).

    CAS  PubMed  Google Scholar 

  105. Kataoka, K., Noda, M. & Nishizawa, M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol. Cell. Biol. 14, 700–712 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the laboratory for helpful discussions and C. Tran Quang, M. Mhlanga and G. Kirchweger for critical reading of the manuscript. A.E.'s laboratory is funded by grants from the INCa (French National Institute of Cancer), the Association pour la Recherche sur le Cancer and the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celio Pouponnot.

Related links

Related links

DATABASES

European Bioinformatics Institute

bZIP

National Cancer Institute

chronic myelogenous leukaemia

multiple myeloma

National Cancer Institute Drug Dictionary

bortezomib

Pfam

bZIP

OMIM

retinitis pigmentosa

FURTHER INFORMATION

A. Eychène's homepage

Angioimmunoblastic T-cell lymphoma

Multiple myeloma

National Laboratory for Computational Science and Engineering

Glossary

Immediate early genes

Genes that show rapid and transient expression in the absence of de novo protein synthesis following stimulation by extracellular signals such as growth factors.

Pulverulent cataract

Cataract is a cause of blindness resulting from an opacity that develops in the crystalline lens of the eye or in its envelope. Pulverulent cataracts are characterized by powdery (pulverised) opacities that may be found in any part of the lens.

Clumped pigmentary retinal degeneration

An inherited retinal disorder also known as the enhanced S-cone syndrome or Goldmann–Favre syndrome, which involves retinal degeneration accompanied by clusters of large, clumped pigment deposits in the peripheral fundus at the level of the retinal pigment epithelium.

Retinitis pigmentosa

Refers to a group of inherited diseases causing retinal degeneration characterized by abnormalities of the photoreceptors (rods and cones) or of the retinal pigment epithelium, leading to progressive vision loss.

Angioimmunoblastic T-cell lymphoma

An aggressive peripheral T-cell lymphoma previously known as angioimmunoblastic lymphadenopathy with dysproteinaemia. It represents disease ranging from a hyperplastic but still benign immune reaction to frank malignant lymphoma.

Extracellular matrix

(ECM). Complex three-dimensional network of macromolecular protein fibres as well as non-fibrous proteoglycans that is present between clusters of cells in the stroma of all tissues. The ECM provides architectural structure and strength and contextual information for cellular communication, adhesion and migration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eychène, A., Rocques, N. & Pouponnot, C. A new MAFia in cancer. Nat Rev Cancer 8, 683–693 (2008). https://doi.org/10.1038/nrc2460

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing