Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA vaccines: precision tools for activating effective immunity against cancer

Key Points

  • Preventative vaccination against infectious organisms has had a dramatic effect on public health. Therapeutic vaccination against cancer is more challenging but, armed with new immunological insight and genetic technology, aims similarly to harness the power of the immune system, in this case to destroy or suppress tumour cells.

  • Passively transferred antibodies and T cells are clearly able to attack human cancer cells in vivo and are included in treatment protocols for some cancers. Active vaccination would generate these effector pathways, together with immunological memory that is able to continuously detect and remove any emergent cancer cells.

  • Tumour antigens are being rapidly revealed, and can be expressed on cell surfaces or, more commonly, as peptides in association with the major histocompatibility complex class I (or II) molecules. DNA vaccines can be designed to activate antibody and/or T-cell responses, providing focused immune attack on selected antigens.

  • DNA vaccines offer a precise but flexible strategy for delivering antigens to the immune system, and additional sequences encoding molecules to manipulate outcome can be included. The problem of translating success in preclinical models to patients seems to be overcome by using electroporation, which dramatically improves performance and is now in clinical trials for prostate cancer.

  • The key to bypassing immune tolerance and activating high levels of anti-tumour antibody or cytotoxic T cells lies in inducing CD4+ T-cell help. Sequences derived from microbial antigens can be incorporated into anti-tumour DNA vaccines, a strategy which mobilizes help for anti-tumour responses from the large non-tolerized anti-microbial repertoire.

  • Clinical trials are the real test, but the current question is largely of efficacy rather than toxicity. New thinking is informing pilot trial design within a highly regulated environment, and immunological assays that can be predictors of clinical outcome are developing rapidly.

Abstract

DNA vaccination has suddenly become a favoured strategy for inducing immunity. The molecular precision offered by gene-based vaccines, together with the facility to include additional genes to direct and amplify immunity, has always been attractive. However, the apparent failure to translate operational success in preclinical models to the clinic, for reasons that are now rather obvious, reduced initial enthusiasm. Recently, novel delivery systems, especially electroporation, have overcome this translational block. Here, we assess the development, current performance and potential of DNA vaccines for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Routes of antigen presentation.
Figure 2: A DNA fusion vaccine designed to activate immunity against B-cell lymphoma.
Figure 3: Pathway of provision of T-cell help for B cells.
Figure 4: DNA fusion vaccine designs based on help from fragment C.
Figure 5: T-cell help for induction of anti-tumour T-cell responses.
Figure 6: pDUO: a novel vaccine design that induces CD8+ T-cell responses by direct presentation.

Similar content being viewed by others

References

  1. Stanley, M. Prophylactic HPV vaccines. J. Clin. Pathol. 60, 961–965 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maloney, D. G. et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84, 2457–2466 (1994).

    CAS  PubMed  Google Scholar 

  3. Valone, F. H. et al. Clinical trials of bispecific antibody MDX-210 in women with advanced breast or ovarian cancer that overexpresses HER-2/neu. J. Hematother 4, 471–475 (1995).

    Article  CAS  Google Scholar 

  4. Goldman, J. M. et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann. Intern. Med. 108, 806–814 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Fontaine, P. et al. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nature Med. 7, 789–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. George, A. J. & Stevenson, F. K. Prospects for the treatment of B cell tumors using idiotypic vaccination. Int. Rev. Immunol. 4, 271–310 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Van Der Bruggen, P. et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Stevenson, F. K., Rice, J. & Zhu, D. Tumor vaccines. Adv. Immunol. 82, 49–103 (2004).

    Article  PubMed  Google Scholar 

  9. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Darnell, R. B. & Posner, J. B. Observing the invisible: successful tumor immunity in humans. Nat. Immunol. 4, 201 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Curiel, T. J. Tregs and rethinking cancer immunotherapy. J. Clin. Invest. 117, 1167–1174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lutsiak, M. E. et al. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862–2868 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emens, L. A., Reilly, R. T. & Jaffee, E. M. Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocr. Relat. Cancer 12, 1–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Dell'Agnola, C. & Biragyn, A. Clinical utilization of chemokines to combat cancer: the double-edged sword. Expert Rev. Vaccines 6, 267–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coscia, M. & Biragyn, A. Cancer immunotherapy with chemoattractant peptides. Semin. Cancer Biol. 14, 209–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Calarota, S. A. & Weiner, D. B. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol. Rev. 199, 84–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, D. & Stevenson, F. K. DNA gene fusion vaccines against cancer. Curr. Opin. Mol. Ther. 4, 41–48 (2002).

    CAS  PubMed  Google Scholar 

  20. Kim, T. W. et al. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum. Gene Ther. 15, 167–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Perkins, S. D. et al. VP22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine 23, 1931–1940 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Gurunathan, S., Klinman, D. M. & Seder, R. A. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol. 18, 927–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hoebe, K. et al. Genetic analysis of innate immunity. Adv. Immunol. 91, 175–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Boyle, J. S., Koniaras, C. & Lew, A. M. Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int. Immunol. 9, 1897–1906 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rice, J. et al. Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 17, 3030–3038 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Bacik, I. et al. Introduction of a glycosylation site into a secreted protein provides evidence for an alternative antigen processing pathway: transport of precursors of major histocompatibility complex class I-restricted peptides from the endoplasmic reticulum to the cytosol. J. Exp. Med. 186, 479–487 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevenson, F. K. et al. DNA vaccines to attack cancer. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14646–14652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leifert, J. A., Rodriguez-Carreno, M. P., Rodriguez, F. & Whitton, J. L. Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunol. Rev. 199, 40–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Stoitzner, P. et al. Langerhans cells cross-present antigen derived from skin. Proc. Natl Acad. Sci. USA 103, 7783–7788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shirota, H., Petrenko, L., Hong, C. & Klinman, D. M. Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity. J. Immunol. 179, 329–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Heath, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Radcliffe, J. N. et al. Prime-boost with alternating DNA vaccines designed to engage different antigen presentation pathways generates high frequencies of peptide-specific CD8+ T cells. J. Immunol. 177, 6626–6633 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Rice, J., Elliott, T., Buchan, S. & Stevenson, F. K. DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J. Immunol. 167, 1558–1565 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Villadangos, J. A., Heath, W. R. & Carbone, F. R. Outside looking in: the inner workings of the cross-presentation pathway within dendritic cells. Trends Immunol. 28, 45–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Delamarre, L. et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Bourgeois, C. et al. CD8 lethargy in the absence of CD4 help. Eur. J. Immunol. 32, 2199–2207 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T-cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, J. C. & Bevan, M. J. Defective CD8 T-cell memory following acute infection without CD4 T-cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003). This paper establishes that, although a primary CD8+ T-cell response may be independent of CD4+ T-cell help, the essential secondary CTL expansion occurring on re-encounter with antigen is wholly dependent on provision of T-cell help at the time of priming. The requirement for CD4+ T-cell dependent programming of CD8+ T-cell responses must be met by vaccines aimed against cancer.

    Article  CAS  PubMed  Google Scholar 

  43. Melief, C. J. et al. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol. Rev. 188, 177–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, Z. et al. CD40-independent pathways of T cell help for priming of CD8+ cytotoxic T lymphocytes. J. Exp. Med. 191, 541–550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Behrens, G. M. et al. Helper requirements for generation of effector CTL to islet β cell antigens. J. Immunol. 172, 5420–5426 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hernandez, J., Aung, S., Marquardt, K. & Sherman, L. A. Uncoupling of proliferative potential and gain of effector function by CD8+ T cells responding to self-antigens. J. Exp. Med. 196, 323–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan, R. et al. Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome. Blood 93, 1506–1510 (1999).

    CAS  PubMed  Google Scholar 

  48. Hamilton, S. E., Wolkers, M. C., Schoenberger, S. P. & Jameson, S. C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol. 7, 475–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Prlic, M., Williams, M. A. & Bevan, M. J. Requirements for CD8 T-cell priming, memory generation and maintenance. Curr. Opin. Immunol. 19, 315–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Wolkers, M. C. et al. Optimizing the efficacy of epitope-directed DNA vaccination. J. Immunol. 168, 4998–5004 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Savelyeva, N. et al. Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nature Biotechnol. 19, 760–764 (2001).

    Article  CAS  Google Scholar 

  54. Hung., C. F. et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res. 61, 3698–3703. (2001).

    CAS  PubMed  Google Scholar 

  55. Stevenson, F. K. et al. DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol. Rev. 199, 156–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Bergman, P. J. et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24, 4582–4585 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Guevara-Patino, J. A., Turk, M. J., Wolchok, J. D. & Houghton, A. N. Immunity to cancer through immune recognition of altered self: studies with melanoma. Adv. Cancer Res. 90, 157–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Bergman, P. J. et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin. Cancer Res. 9, 1284–1290 (2003).

    CAS  PubMed  Google Scholar 

  59. Nakajima, C. et al. A role of interferon-γ (IFN- γ) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN- γ -deficient mice. Cancer Res. 61, 3399–3405 (2001).

    CAS  PubMed  Google Scholar 

  60. Wilcox, R. A. et al. Impaired infiltration of tumor-specific cytolytic T cells in the absence of interferon-γ despite their normal maturation in lymphoid organs during CD137 monoclonal antibody therapy. Cancer Res. 62, 4413–4418 (2002).

    CAS  PubMed  Google Scholar 

  61. Carter, P. J. Potent antibody therapeutics by design. Nature Rev. Immunol. 6, 343–357 (2006).

    Article  CAS  Google Scholar 

  62. Hamblin, T. J. et al. Preliminary experience in treating lymphocytic leukaemia with antibody to immunoglobulin idiotypes on the cell surfaces. Br. J. Cancer 42, 495–502 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lowder, J. N. et al. Studies on B lymphoid tumors treated with monoclonal anti-idiotype antibodies: correlation with clinical responses. Blood 69, 199–210 (1987).

    CAS  PubMed  Google Scholar 

  64. Timmerman, J. M. et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 62, 5845–5852 (2002).

    CAS  PubMed  Google Scholar 

  65. Stevenson, F. K. et al. A genetic approach to idiotypic vaccination for B cell lymphoma. Ann. NY Acad. Sci. 772, 212–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Spellerberg, M. B. et al. DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment, C. J. Immunol. 159, 1885–1892 (1997).

    CAS  PubMed  Google Scholar 

  67. King, C. A. et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nature Med. 4, 1281–1286 (1998). The concept of using a microbial sequence fused to an antigen sequence to amplify antibody responses also operates through DNA delivery. Fusion converted a poorly immunogenic idiotypic antigen into a powerful immunogen able to provide specific protection against lymphoma.

    Article  CAS  PubMed  Google Scholar 

  68. Savelyeva, N., King, C. A., Vitetta, E. S. & Stevenson, F. K. Inhibition of a vaccine-induced anti-tumor B cell response by soluble protein antigen in the absence of continuing T cell help. Proc. Natl Acad. Sci. USA 102, 10987–10992 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Padua, R. A. et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature Med. 9, 1413–1417 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, C. M. et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat. Immunol. 5, 1143–1148 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Gerloni, M., Castiglioni, P. & Zanetti, M. The cooperation between two CD4 T cells induces tumor protective immunity in MUC.1 transgenic mice. J. Immunol. 175, 6551–6559 (2005). Weak CD4+ T-cell responses can themselves be helped by parallel CD4+ T-cell responses to foreign epitopes. This phenomenon of T H –T H cooperation might be particularly important in overcoming regulation and again informs vaccine design.

    Article  CAS  PubMed  Google Scholar 

  72. Mueller, S. N. et al. CD4+ T cells can protect APC from CTL-mediated elimination. J. Immunol. 176, 7379–7384 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Yewdell, J. W. & Bennink, J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann. Rev. Immunol. 17, 51–88 (1999).

    Article  CAS  Google Scholar 

  74. Chen, W. & McCluskey, J. Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv. Cancer Res. 95, 203–247 (2006). Immunodominance is a natural focusing of CTL activity against a few target epitopes. Responses against strong epitopes can suppress those against weak epitopes and could allow tumour cells to escape.

    Article  CAS  PubMed  Google Scholar 

  75. Le, T. T. et al. Cytotoxic T cell polyepitope vaccines delivered by ISCOMs. Vaccine 19, 4669–4675 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Smith, S. G. et al. Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin. Cancer Res. 7, 4253–4261 (2001).

    CAS  PubMed  Google Scholar 

  77. Rice, J., Buchan, S. & Stevenson, F. K. Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J. Immunol. 169, 3908–3913 (2002). A DNA vaccine design using a minimized microbial sequence to provide non-immunodominating T-cell help, together with a single tumour-derived epitope to generate focused CD8+ T-cell responses, appears effective. It is now in clinical trials.

    Article  CAS  PubMed  Google Scholar 

  78. Perez-Diez, A. et al. Intensity of the vaccine-elicited immune response determines tumor clearance. J. Immunol. 168, 338–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Snyder, H. L. et al. Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur. J. Immunol. 28, 1339–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Rice, J. et al. DNA fusion vaccines induce targeted epitope-specific CTLs against minor histocompatibility antigens from a normal or tolerized repertoire. J. Immunol. 173, 4492–4499 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Rice, J. et al. DNA fusion vaccines induce epitope-specific cytotoxic CD8+ T cells against human leukemia-associated minor histocompatibility antigens. Cancer Res. 66, 5436–5442 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. van Bergen, J. et al. Efficient loading of HLA-DR with a T helper epitope by genetic exchange of CLIP. Proc. Natl Acad. Sci. USA 94, 7499–7502. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Firat, H. et al. H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur. J. Immunol. 29, 3112–3121 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Fuller, D. H., Loudon, P. & Schmaljohn, C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 40, 86–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Dupuis, M. et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol. 165, 2850–2858. (2000).

    Article  CAS  PubMed  Google Scholar 

  86. McConkey, S. J. et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nature Med. 9, 729–735 (2003). DNA vaccines in a prime–boost combination with a recombinant vaccinia virus were tested in normal human subjects, providing important early data on protection against infection with malaria.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider, J. et al. Enhanced immunogenicity for CD8+ T-cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature Med. 4, 397–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Moore, A. C. & Hill, A. V. Progress in DNA-based heterologous prime–boost immunization strategies for malaria. Immunol. Rev. 199, 126–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Ramshaw, I. A. & Ramsay, A. J. The prime/boost strategy: exciting prospects for improved vaccination. Immunol. Today 21, 163–165. (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Zavala, F. et al. A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8+ T cells. Virology 280, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Kundig, T. M., Kalberer, C. P., Hengartner, H. & Zinkernagel, R. M. Vaccination with two different vaccinia recombinant viruses: long-term inhibition of secondary vaccination. Vaccine 11, 1154–1158 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Cooney, E. L. et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 337, 567–572 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Rooney, J. F. et al. Immunization with a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: long-term protection and effect of revaccination. J. Virol. 62, 1530–1534 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Smith, C. L. et al. Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J. Immunol. 175, 8431–8437 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Bins, A. D. et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nature Med. 11, 899–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Greenland, J. R. & Letvin, N. L. Chemical adjuvants for plasmid DNA vaccines. Vaccine 25, 3731–3741 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Aihara, H. & Miyazaki, J. Gene transfer into muscle by electroporation in vivo. Nature Biotechnol. 16, 867–870 (1998).

    Article  CAS  Google Scholar 

  98. Mathiesen, I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 6, 508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. USA 96, 4262–4267 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ahlen, G. et al. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J. Immunol. 179, 4741–4753 (2007). The perceived difficulty in translating the effectiveness of DNA vaccination from pre-clinical rodents to large animals, including human subjects, appears to have been overcome by the use of electroporation. The mechanisms of amplification of performance include increased antigen expression and development of inflammation at the injection site.

    Article  CAS  PubMed  Google Scholar 

  101. Widera, G. et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 164, 4635–4640. (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Babiuk, S. et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20, 3399–3408 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Tollefsen, S. et al. Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation. Vaccine 20, 3370–3378 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Buchan, Sarah et al. Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J. Immunol. 174, 6292–6298 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Smith, H. A. & Klinman, D. M. The regulation of DNA vaccines. Curr. Opin. Biotechnol. 12, 299–303. (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, Z. et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 11, 711–721 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Schalk, J. A. et al. Preclinical and clinical safety studies on DNA vaccines. Hum. Vaccin 2, 45–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Lowe, D. B., Shearer, M. H., Jumper, C. A. & Kennedy, R. C. Towards progress on DNA vaccines for cancer. Cell. Mol. Life Sci. 64, 2391–2403 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Todorova, K. et al. Humoral immune response in prostate cancer patients after immunization with gene-based vaccines that encode for a protein that is proteasomally degraded. Cancer Immun. 5, 1 (2005).

    PubMed  Google Scholar 

  111. Klencke, B. et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res. 8, 1028–1037 (2002).

    CAS  PubMed  Google Scholar 

  112. Wolchok, J. D. et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol. Ther. 15, 2044–2050 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Coleman, S. et al. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res. 65, 7000–7006 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Arlen, P. M. et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res. 12, 1260–1269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end-stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Suzuki, E. et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Suzuki, E. et al. Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol. Ther. 6, (2007).

  118. Kaufman, H. L. & Divgi, C. R. Optimizing prostate cancer treatment by combining local radiation therapy with systemic vaccination. Clin. Cancer Res. 11, 6757–6762 (2005).

    Article  PubMed  Google Scholar 

  119. Rapoport, A. P. et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Med. 11, 1230–1237 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Stevenson, F. K., Di Genova, G., Ottensmeier, C. H. & Savelyeva, N. in Cancer Immunotherapy: Immune Suppression and Tumor Growth (eds Prendergast, G. C. & Jaffee, E. M.) 183–204 (Academic, London, 2007).

    Book  Google Scholar 

  121. Di Genova, G., Roddick, J., McNicholl, F. & Stevenson, F. K. Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood 107, 2806–2813 (2006). A surprising finding emerging from simple studies of CD4+ T-cell responses in normal human subjects to conventional vaccines was that vaccination co-stimulates memory CD4+ T cells against non-vaccine antigens. This 'bystander' stimulation is relevant for the maintenance of T-cell memory and for evaluating vaccine-induced responses.

    Article  CAS  PubMed  Google Scholar 

  122. Mayer, S. et al. Analysis of the immune response against tetanus toxoid: enumeration of specific T helper cells by the ELISPOT assay. Immunobiology 205, 282–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Rahman, F. et al. Cellular and humoral immune responses induced by intradermal or intramuscular vaccination with the major hepatitis B surface antigen. Hepatology 31, 521–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bocher, W. O. et al. Kinetics of hepatitis B surface antigen-specific immune responses in acute and chronic hepatitis B or after HBs vaccination: stimulation of the in vitro antibody response by interferon γ. Hepatology 29, 238–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Otten, G. et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22, 2489–2493 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Luckay, A. et al. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J. Virol. 81, 5257–5269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Powell, K. DNA vaccines — back in the saddle again? Nature Biotechnol. 22, 799–801 (2004).

    Article  CAS  Google Scholar 

  128. Lorenzen, N. & LaPatra, S. E. DNA vaccines for aquacultured fish. Rev. Sci. Tech. 24, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Norman, J. A. et al. Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine 15, 801–803 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Moreno, S. et al. DNA immunisation with minimalistic expression constructs. Vaccine 22, 1709–1716 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Klinman, D. M. Adjuvant activity of CpG oligodeoxynucleotides. Int. Rev. Immunol. 25, 135–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Spies, B. et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol. 171, 5908–5912 (2003). The assumption, derived largely from data on synthetic CpG oligonucleotides, that sequences in the backbone of DNA plasmid vaccines operated solely through TLR9 was challenged by the finding that DNA vaccines functioned well in Tlr−/− mice.

    Article  CAS  PubMed  Google Scholar 

  135. Rosenberg, S. A. et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum. Gene Ther. 14, 709–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Nabel, G. J. et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc. Natl Acad. Sci. USA 93, 15388–15393 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tagawa, S. T. et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 98, 144–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Triozzi, P. L. et al. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J. Immunother. 28, 382–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Smith, C. L. et al. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int. J. Cancer 113, 259–266 (2005). The concept that delivery of weak antigens by viral vectors will succeed has many theoretical problems. This paper illustrates that immunodomination from virus-specific CTL is one, and this is evident in a clinical trial in patients with melanoma.

    Article  CAS  PubMed  Google Scholar 

  140. Conry, R. M. et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin. Cancer Res. 8, 2782–2787 (2002).

    CAS  PubMed  Google Scholar 

  141. Mincheff, M. et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur. Urol. 38, 208–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Pavlenko, M. et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 91, 688–694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Miller, A. M., Ozenci, V., Kiessling, R. & Pisa, P. Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J. Immunother. 28, 389–395 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Leukaemia Research Fund, Tenovus and Cancer Research UK for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda K. Stevenson.

Ethics declarations

Competing interests

Jason Rice, Christian H. Ottensmeier and Freda K. Stevenson hold stock in a small company (Genvax), of which Freda K. Stevenson is also a director. Jason Rice and Freda K. Stevenson also hold patents on their DNA fusion gene vaccine designs.

Related links

Related links

DATABASES

National Cancer Institute

melanoma

prostate cancer

FURTHER INFORMATION

Freda K. Stevenson's homepage

Cancer Immunotherapy Consortium

Gene Therapy Clinical Trials Worldwide

Glossary

Graft versus leukaemia

Following allotransplantation of bone marrow or blood stem cells from a healthy donor into an MHC-matched patient, donor T cells may recognize peptides on patient leukaemia cells that result from polymorphic differences between the two individuals, resulting in beneficial immune attack.

Idiotypic antigen

Individual antigenic determinants from the variable regions of the Ig heavy and light chains are referred to as idiotopes; the sum of the individual idiotopes is referred to as the idiotype.

Cancer-testis antigens

(CTA). Cancer testis antigens are encoded by germline genes but are expressed only in tumours and in male germline cells. As the latter express no MHC molecules, the CTA are effectively tumour-specific.

Tolerance

The process that ensures that B- and T-cell repertoires are biased against self-reactivity, reducing the likelihood of autoimmunity.

Regulatory T cells

(TReg). Regulatory CD4+ T cells serve to limit immune responses, thereby protecting against autoimmunity. There are two main types, termed natural for those developing in the thymus and adaptive for those arising in the periphery following infection and possibly cancer.

Innate immunity

The first line of host defence against invading pathogenic organisms until an adaptive pathogen-specific immune response is able to develop. This is a multi-component system that includes various barriers to infection, such as physical barriers (for example, skin), physiological barriers (for example, stomach pH) and inflammatory barriers (for example, release of anti-bacterial serum proteins).

Leader (signal) sequence

Leader (or signal) sequences are hydrophobic domains which are cleaved from synthesized membrane-bound or secreted proteins during transfer into the endoplasmic reticulum through the Sec61 channel. For DNA vaccines, the leader sequence is placed at the 5′ end of the encoded antigen.

Cross-presentation

The uptake, processing and presentation by professional APCs of antigen that has been acquired from an exogenous source into the MHC class I pathway for induction of CD8+ T-cell responses.

Direct presentation

The conventional pathway of processing and presentation of antigen into the MHC class I pathway from an endogenous intracellular source.

Anti-CD40 antibodies

Agonistic anti-CD40 antibodies mimic the natural ligand (CD154) and stimulate DC to activate T-cell immunity.

Tetanus toxin

This is produced by the bacterium Clostridium tetani. Treatment with formaldehyde inactivates the toxin to produce tetanus toxoid, a non-toxic but extremely immunogenic derivative that is used as a vaccine in both adults and children.

T-cell help

Activated antigen-specific CD4+ T helper cells (TH) have a major role in linking and coordinating innate and adaptive immune responses. TH cells help B cells to produce antibodies and maintain circulating memory B cells; they also help stimulate and maintain both CD4+ and CD8+ T cell responses.

Single chain Fv

(scFv). A recombinant polypeptide sequence consisting of the variable regions from the immunoglobulin light and heavy chains. These are usually separated by a short linker sequence to allow the variable regions to fold and assume the native conformation of the antigen binding site of the immunoglobulin from which they are derived.

Fragment C

(FrC). A non-toxic yet highly immunogenic polypeptide corresponding to the 50 kDa carboxy-terminal portion of the heavy chain of tetanus toxin. It has a two-domain structure and the amino-terminal domain (DOM) contains a 'helper' peptide (p30) that has been shown to bind to a wide range of both murine and human MHC class II haplotypes, leading to CD4+ T-cell activation.

'Licensing' of dendritic cells

Licensing of dendritic cells by activated CD4+ T cells is essential for the generation of effective CD8+ T cell responses and possibly also for CD4+ T cell responses. Multiple interacting molecular pairs are likely to be involved, including CD40–CD40 ligand, CD28–CD80/86 and OX40–OX40 ligand.

Immunodominant peptides

The natural human CTL response to an antigen tends to focus on only a few immunodominant peptides. The precise mechanisms that establish this hierarchy remain unclear but the presentation of epitopes to naive CTL is controlled at several points, including processing efficiency, capacity to bind to MHC class I molecules and the stability of the bound complex on the cell surface.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, J., Ottensmeier, C. & Stevenson, F. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8, 108–120 (2008). https://doi.org/10.1038/nrc2326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing