Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis

Abstract

Human breast cancers are heterogeneous, both in their pathology and in their molecular profiles. This suggests the hypothesis that breast cancers can initiate in different cell types, either breast epithelial stem cells or their progeny (transit amplifying cells or committed differentiated cells). In this respect, breast cancer could be viewed as being similar to haematological malignancies for which an analogous model has been proposed. Drawing such parallels might help to unravel the molecular nature of the initiating events in breast cancer and might have substantial clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed epithelial cell hierarchy and the respective cellular phenotypes present in the human and mouse mammary glands.
Figure 2: Strategy to decipher the cellular targets of different oncogenic mutations and different cancer stem cell phenotypes.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Deramaudt, T. & Rustgi, A. K. Mutant KRAS in the initiation of pancreatic cancer. Biochim. Biophys. Acta 1756, 97–101 (2005).

    CAS  PubMed  Google Scholar 

  3. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Tavassoli, F. A. & Devilee, P. Pathology and Genetics of Tumours of the Breast and Female Genital Organs (International Agency for Research on Cancer, Oxford Univ. Press, Lyon, 2003).

    Google Scholar 

  5. Buerger, H. et al. Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J. Pathol. 194, 165–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Buerger, H. et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J. Pathol. 187, 396–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Buerger, H. et al. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J. Pathol. 189, 521–526 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Marsh, S. & McLeod, H. L. Pharmacogenetics and oncology treatment for breast cancer. Expert Opin. Pharmacother. 8, 119–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Brenton, J. D., Carey, L. A., Ahmed, A. A. & Caldas, C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23, 7350–7360 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertucci, F. et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 66, 4636–4644 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Bertucci, F. et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res. 65, 2170–2178 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Jones, C. et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res. 64, 3037–3045 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Stingl, J., Eaves, C. J., Kuusk, U. & Emerman, J. T. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63, 201–213 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67, 93–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Villadsen, R. et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol. 177, 87–101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gudjonsson, T. et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16, 693–706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parmar, H. et al. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology 143, 4886–4896 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Stingl, J., Raouf, A., Emerman, J. T. & Eaves, C. J. Epithelial progenitors in the normal human mammary gland. J. Mammary Gland Biol. Neoplasia 10, 49–59 (2005).

    Article  PubMed  Google Scholar 

  25. Proia, D. A. & Kuperwasser, C. Reconstruction of human mammary tissues in a mouse model. Nature Protoc. 1, 206–214 (2006).

    Article  CAS  Google Scholar 

  26. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Smalley, M. J., Titley, J. & O'Hare, M. J. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev. Biol. Anim. 34, 711–721 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol. 9, 201–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Sleeman, K. E. et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol. 176, 19–26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Asselin-Labat, M. L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst. 98, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Clarke, R. B., Howell, A., Potten, C. S. & Anderson, E. P27(KIP1) expression indicates that steroid receptor-positive cells are a non-proliferating, differentiated subpopulation of the normal human breast epithelium. Eur. J. Cancer 36 (Suppl. 4), 28–29 (2000).

    Article  Google Scholar 

  33. Jordan, V. C. SERMs: meeting the promise of multifunctional medicines. J. Natl Cancer Inst. 99, 350–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shyamala, G., Chou, Y. C., Cardiff, R. D. & Vargis, E. Effect of c-neu/ ErbB2 expression levels on estrogen receptor α-dependent proliferation in mammary epithelial cells: implications for breast cancer biology. Cancer Res. 66, 10391–10398 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Booth, B. W. & Smith, G. H. Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res. 8, R49 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cairns, J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Natl Acad. Sci. USA 99, 10567–10570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Abd El-Rehim, D. M. et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int. J. Cancer 116, 340–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Callagy, G. et al. Molecular classification of breast carcinomas using tissue microarrays. Diagn. Mol. Pathol. 12, 27–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Makretsov, N. A. et al. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin. Cancer Res. 10, 6143–6151 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen, T. O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Naderi, A. et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26, 1507–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Teschendorff, A. E. et al. A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol. 7, R101 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gordon, L. A. et al. Breast cell invasive potential relates to the myoepithelial phenotype. Int. J. Cancer 106, 8–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Sheridan, C. et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 8, R59 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res. 65, 6207–6219 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Cariati, N. et al. α6-Integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int. J. Cancer (in the press).

  60. Chepko, G. & Smith, G. H. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29, 239–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Zeps, N., Bentel, J. M., Papadimitriou, J. M., D'Antuono, M. F. & Dawkins, H. J. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62, 221–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Sapino, A., Macri, L., Gugliotta, P. & Bussolati, G. Immunocytochemical identification of proliferating cell types in mouse mammary gland. J. Histochem. Cytochem. 38, 1541–1547 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Ferguson, D. J. Ultrastructural characterisation of the proliferative (stem?) cells within the parenchyma of the normal “resting” breast. Virchows Arch. A 407, 379–385 (1985).

    Article  CAS  Google Scholar 

  64. Ferguson, D. J. An ultrastructural study of mitosis and cytokinesis in normal 'resting' human breast. Cell Tissue Res. 252, 581–587 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Joshi, K., Smith, J. A., Perusinghe, N. & Monoghan, P. Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol. 124, 199–206 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Preston-Martin, S., Pike, M. C., Ross, R. K., Jones, P. A. & Henderson, B. E. Increased cell division as a cause of human cancer. Cancer Res. 50, 7415–7421 (1990).

    CAS  PubMed  Google Scholar 

  67. Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Passegue, E., Jamieson, C. H., Ailles, L. E. & Weissman, I. L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl Acad. Sci. USA 100 (Suppl. 1), 11842–11849 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Turhan, A. G. et al. Highly purified primitive hematopoietic stem cells are PML–RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood 85, 2154–2161 (1995).

    CAS  PubMed  Google Scholar 

  73. Dontu, G., El-Ashry, D. & Wicha, M. S. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol. Metab. 15, 193–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Miyamoto, T. et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 87, 4789–4796 (1996).

    CAS  PubMed  Google Scholar 

  75. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuan, Y. et al. AML1–ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl Acad. Sci. USA 98, 10398–10403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    CAS  PubMed  Google Scholar 

  78. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. & Dick, J. E. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunol. 7, 1225–1233 (2006).

    Article  CAS  Google Scholar 

  81. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  82. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 8, R7 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. Dimri, G., Band, H. & Band, V. Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res. 7, 171–179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun, W., Kang, K. S., Morita, I., Trosko, J. E. & Chang, C. C. High susceptibility of a human breast epithelial cell type with stem cell characteristics to telomerase activation and immortalization. Cancer Res. 59, 6118–6123 (1999).

    CAS  PubMed  Google Scholar 

  86. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA 100, 15853–15858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, Y. & Rosen, J. M. Stem/progenitor cells in mouse mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 10, 17–24 (2005).

    Article  PubMed  Google Scholar 

  91. Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19, 968–988 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Henry, M. D., Triplett, A. A., Oh, K. B., Smith, G. H. & Wagner, K. U. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 23, 6980–6985 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA 97, 3444–3449 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abd El-Rehim, D. M. et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol. 203, 661–671 (2004).

    Article  PubMed  Google Scholar 

  95. van de Rijn, M. et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. 161, 1991–1996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Jumppanen, M. et al. Basal-like phenotype is not associated with patient survival in estrogen-receptor- negative breast cancers. Breast Cancer Res. 9, R16 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yehiely, F., Moyano, J. V., Evans, J. R., Nielsen, T. O. & Cryns, V. L. Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol. Med. 12, 537–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Livasy, C. A. et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol. 19, 264–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Wynford-Thomas, D. & Blaydes, J. The influence of cell context on the selection pressure for p53 mutation in human cancer. Carcinogenesis 19, 29–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meletis, K. et al. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Comer, K. A. et al. Human smooth muscle α-actin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene 16, 1299–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Cui, X. S. & Donehower, L. A. Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogene 19, 5988–5996 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Foulkes, W. D. et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst. 95, 1482–1485 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Elledge, S. J. & Amon, A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell 1, 129–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Foulkes, W. D. BRCA1 functions as a breast stem cell regulator. J. Med. Genet. 41, 1–5 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Cheung, A. M. et al. Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53+/− mutant mice. Cancer Res. 64, 1959–1965 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet. 29, 418–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Wagner, K. U. et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129, 1377–1386 (2002).

    CAS  PubMed  Google Scholar 

  113. Wagner, K. U. et al. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 10, 545–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Shen, Q. & Brown, P. H. Transgenic mouse models for the prevention of breast cancer. Mutat. Res. 576, 93–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    CAS  PubMed  Google Scholar 

  117. Teschendorff, A. E., Naderi, A., Barbosa-Morais, N. L. & Caldas, C. PACK: profile analysis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics 22, 2269–2275 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Teschendorff A. E., Miremadi A., Pinder S., Ellis I. O. & Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 8, R157 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

J. S. is supported by funds provided by the Breast Cancer Campaign and C. C. is supported by Cancer Research UK. The authors would like to thank P. Eirew for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Caldas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Carlos Caldas's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingl, J., Caldas, C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7, 791–799 (2007). https://doi.org/10.1038/nrc2212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing