Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleophosmin and cancer

Key Points

  • Nucleophosmin (NPM, also known as B23) is a ubiquitously expressed nucleolar phosphoprotein that constantly shuttles between the nucleus and cytoplasm. NPM contains distinct functional domains through which it has many functions in the cell.

  • NPM is involved in cellular activities related to both proliferation and growth-suppression pathways. It participates in the process of ribosome biogenesis, and it controls genetic stability through the regulation of centrosome duplication. As a result, NPM overexpression correlates with uncontrolled cell growth and cellular transformation, whereas the disruption of NPM expression can cause genomic instability and centrosome amplification, which increases the risk of cellular transformation.

  • NPM is involved in the apoptotic response to stress and oncogenic stimuli (such as DNA damage and hypoxia), and it can modulate the activity and stability of crucial tumour-suppressor proteins such as p53.

  • Loss of NPM function leads to the destabilization and functional impairment of the ARF tumour-suppressor pathways, as NPM functions as a positive regulator of ARF protein stability.

  • NPM is implicated in human tumorigenesis. NPM is frequently overexpressed in solid tumours of a diverse histological origin, and genetic alterations that involve NPM1 occur frequently in haematopoietic tumours, such as chromosomal translocations in both lymphoid and myeloid disorders, and mutations in acute myeloid leukaemia (AML).

  • In tumour cells where NPM1 has been altered, NPM function can potentially be impaired both by the presence of antagonizing mutated products hetero-dimerizing with the wild-type protein, and by the reduction in the dosage of the gene to a single functional allele.

  • Depending on its expression levels and gene dosage, NPM seems to function as either an oncogene or a tumour suppressor. Either partial functional loss or aberrant overexpression could lead to neoplastic transformation through distinct mechanisms.

Abstract

NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of NPM1 gene translocations and mutations in leukaemia and lymphoma.
Figure 2: How NPM1 gene alteration in human cancer can contribute to tumorigenesis.
Figure 3: NPM overexpression in tumour cells leads to increased proliferation and inhibition of apoptosis.
Figure 4: NPM and ARF regulate cellular growth and proliferation through the control of each others stability and/or activity.
Figure 5: Hypothetical model of NPM involvement in the control of centrosome duplication and mitosis.

Similar content being viewed by others

References

  1. Feuerstein, N. & Mond, J. J. Identification of a prominent nuclear protein associated with proliferation of normal and malignant B cells. J. Immunol. 139, 1818–1822 (1987).

    CAS  PubMed  Google Scholar 

  2. Schmidt-Zachmann, M. S., Hugle-Dorr, B. & Franke, W. W. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 6, 1881–1890 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmidt-Zachmann, M. S. & Franke, W. W. DNA cloning and amino acid sequence determination of a major constituent protein of mammalian nucleoli. Correspondence of the nucleoplasmin-related protein NO38 to mammalian protein B23. Chromosoma 96, 417–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Kang, Y. J., Olson, M. O., Busch, H. & Jones, C. Phosphorylation of acid-soluble proteins in isolated nucleoli of Novikoff hepatoma ascites cells. Effects of divalent cations. Nucleolar phosphoproteins of normal rat liver and Novikoff hepatoma ascites cells. J. Biol. Chem. 249, 5580–5585 (1974).

    CAS  PubMed  Google Scholar 

  5. Kang, Y. J., Olson, M. O., Jones, C. & Busch, H. Nucleolar phosphoproteins of normal rat liver and Novikoff hepatoma ascites cells. Cancer Res. 35, 1470–1475 (1975).

    CAS  PubMed  Google Scholar 

  6. Feuerstein, N., Chan, P. K. & Mond, J. J. Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23. Implication for the role of the nucleolus in early transduction of mitogenic signals. J. Biol. Chem. 263, 10608–10612 (1988).

    CAS  PubMed  Google Scholar 

  7. Chan, W. Y. et al. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 28, 1033–1039 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153 (2005). Shows for the first time that disruption of NPM expression in vivo leads to embryonic lethality at mid-gestation. The total or partial loss of Npm1 gene function leads to centrosome amplification, aneuploidy and cancer susceptibility.

    Article  CAS  PubMed  Google Scholar 

  9. Colombo, E. et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol. Cell. Biol. 25, 8874–86 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005). The first paper to identify the cytoplasmic dislocation of NPM and the mutation of exon12 of the NPM1 gene as a hallmark of a large subgroup of AML (NPMc+ AML).

    Article  CAS  PubMed  Google Scholar 

  11. Borer, R. A., Lehner, C. F., Eppenberger, H. M. & Nigg, E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56, 379–390 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Yun, J. P. et al. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J. Cell Biochem. 90, 1140–1148 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hingorani, K., Szebeni, A. & Olson, M. O. Mapping the functional domains of nucleolar protein B23. J. Biol. Chem. 275, 24451–24457 (2000). In vitro analysis of the functional features of the different NPM molecular domains.

    Article  CAS  PubMed  Google Scholar 

  14. Szebeni, A. & Olson, M. O. Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 8, 905–912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okuwaki, M., Matsumoto, K., Tsujimoto, M. & Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 506, 272–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Swaminathan, V., Kishore, A. H., Febitha, K. K. & Kundu, T. K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol. Cell. Biol. 25, 7534–7545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, J. H. & Olson, M. O. Structure of the gene for rat nucleolar protein B23. J. Biol. Chem. 265, 18227–18233 (1990).

    CAS  PubMed  Google Scholar 

  18. Wang, D., Umekawa, H. & Olson, M. O. Expression and subcellular locations of two forms of nucleolar protein B23 in rat tissues and cells. Cell. Mol. Biol. Res. 39, 33–42 (1993).

    CAS  PubMed  Google Scholar 

  19. Herrera, J. E., Correia, J. J., Jones, A. E. & Olson, M. O. Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23. Biochemistry 35, 2668–2673 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Namboodiri, V. M., Akey, I. V., Schmidt-Zachmann, M. S., Head, J. F. & Akey, C. W. The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure 12, 2149–2160 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, D. et al. The nucleic acid binding activity of nucleolar protein B23. 1 resides in its carboxyl-terminal end. Interaction of nucleolar phosphoprotein B23 with nucleic acids. J. Biol. Chem. 269, 30994–30998 (1994).

    CAS  PubMed  Google Scholar 

  22. Okuwaki, M., Tsujimoto, M. & Nagata, K. The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol. Biol. Cell. 13, 2016–2030 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Savkur, R. S. & Olson, M. O. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res. 26, 4508–4515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahn, J. Y. et al. Nucleophosmin/B23, a nuclear PI(3, 4, 5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol. Cell 18, 435–445 (2005). Shows that NPM is a downstream effector of PI3-kinase, and is potentially important in malignant cells when the PI3k pathway is altered. NPM functions as a nuclear PIP 3 receptor that mediates the anti-apoptotic effects of NGF by inhibiting the DNA fragmentation activity of CAD.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, M., Sasaki, H., Kino, I., Sugimura, T. & Terada, M. Genes preferentially expressed in embryo stomach are predominantly expressed in gastric cancer. Cancer Res. 52, 3372–3377 (1992).

    CAS  PubMed  Google Scholar 

  26. Nozawa, Y., Van Belzen, N., Van der Made, A. C., Dinjens, W. N. & Bosman, F. T. Expression of nucleophosmin/B23 in normal and neoplastic colorectal mucosa. J. Pathol. 178, 48–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Shields, L. B. et al. Induction of immune responses to ovarian tumor antigens by multiparity. J. Soc. Gynecol. Investig. 4, 298–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Subong, E. N. et al. Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4–216) recognizes nucleophosmin/B23. Prostate 39, 298–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Tsui, K. H., Cheng, A. J., Chang, P. L., Pan, T. L. & Yung, B. Y. Association of nucleophosmin/B23 mRNA expression with clinical outcome in patients with bladder carcinoma. Urology 64, 839–844 (2004).

    Article  PubMed  Google Scholar 

  30. Skaar, T. C. et al. Two-dimensional gel electrophoresis analyses identify nucleophosmin as an estrogen regulated protein associated with acquired estrogen-independence in human breast cancer cells. J. Steroid Biochem. Mol. Biol. 67, 391–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Redner, R. L., Rush, E. A., Faas, S., Rudert, W. A. & Corey, S. J. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87, 882–886 (1996).

    CAS  PubMed  Google Scholar 

  32. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Raimondi, S. C. et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia 3, 42–47 (1989).

    CAS  PubMed  Google Scholar 

  34. Yoneda-Kato, N. et al. The t(3;5)(q25. 1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM–MLF1. Oncogene 12, 265–275 (1996).

    CAS  PubMed  Google Scholar 

  35. Olney, H. J. & Le Beau, M. M. in The Myelodysplastic Syndromes, Pathobiology and Clinical Management (ed. Bennet, J. M.) 89–120 (Marcel Dekker, New York, 2002).

    Google Scholar 

  36. Mendes-da-Silva, P., Moreira, A., Duro-da-Costa, J., Matias, D. & Monteiro, C. Frequent loss of heterozygosity on chromosome 5 in non-small cell lung carcinoma. Mol. Pathol. 53, 184–187 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berger, R. et al. Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements. Leukemia 20, 319–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bischof, D., Pulford, K., Mason, D. Y. & Morris, S. W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol. 17, 2312–2325 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feuerstein, N. & Randazzo, P. A. In vivo and in vitro phosphorylation studies of numatrin, a cell cycle regulated nuclear protein, in insulin-stimulated NIH 3T3 HIR cells. Exp. Cell Res. 194, 289–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Gubin, A. N., Njoroge, J. M., Bouffard, G. G. & Miller, J. L. Gene expression in proliferating human erythroid cells. Genomics 59, 168–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Dergunova, N. N. et al. A major nucleolar protein B23 as a marker of proliferation activity of human peripheral lymphocytes. Immunol. Lett. 83, 67–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–93 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takemura, M. et al. Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase α activity. J. Biochem. (Tokyo) 125, 904–909 (1999).

    Article  CAS  Google Scholar 

  45. Hsu, C. Y. & Yung, B. Y. Down-regulation of nucleophosmin/B23 during retinoic acid-induced differentiation of human promyelocytic leukemia HL-60 cells. Oncogene 16, 915–923 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. You, B. J. et al. Decrease in nucleophosmin/B23 mRNA and telomerase activity during indomethacin-induced apoptosis of gastric KATO-III cancer cells. Naunyn Schmiedebergs Arch. Pharmacol. 360, 683–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yung, B. Y. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells. FEBS. Lett. 578, 211–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Jiang, P. S. & Yung, B. Y. Down-regulation of nucleophosmin/B23 mRNA delays the entry of cells into mitosis. Biochem. Biophys. Res. Commun. 257, 865–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, H. L., Hsu, C. Y., Liu, W. H. & Yung, B. Y. Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity. Int. J. Cancer 81, 923–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Hsu, C. Y. & Yung, B. Y. Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int. J. Cancer 88, 392–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Brady, S. N., Yu, Y., Maggi, L. B., Jr. & Weber, J. D. ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol. Cell. Biol. 24, 9327–9338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dumbar, T. S., Gentry, G. A. & Olson, M. O. Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry 28, 9495–9501 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Prestayko, A. W., Klomp, G. R., Schmoll, D. J. & Busch, H. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Biochemistry 13, 1945–1951 (1974).

    Article  CAS  PubMed  Google Scholar 

  54. Olson, M. O., Wallace, M. O., Herrera, A. H., Marshall-Carlson, L. & Hunt, R. C. Preribosomal ribonucleoprotein particles are a major component of a nucleolar matrix fraction. Biochemistry 25, 484–491 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Herrera, J. E., Savkur, R. & Olson, M. O. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res. 23, 3974–3979 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Itahana, K. et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151–1164 (2003). Downregulation of NPM expression affects the processing of pre-ribosomal RNA and induces cell death. ARF is proposed to promote the polyubiquitylation and degradation of NPM, a possible target of the ability of ARF to inhibit rRNA processing in a p53-independent manner.

    Article  CAS  PubMed  Google Scholar 

  57. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  58. Boxer, L. M. & Dang, C. V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Bertwistle, D., Sugimoto, M. & Sherr, C. J. Physical and functional interactions of the ARF tumor suppressor protein with nucleophosmin/B23. Mol. Cell. Biol. 24, 985–996 (2004). Shows that a significant proportion of nucleolar ARF associates with NPM in high-molecular-weight complexes (2–5 MDa), where NPM regulates the ability of ARF to retard rRNA processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sugimoto, M., Kuo, M. L., Roussel, M. F. & Sherr, C. J. Nucleolar ARF tumor suppressor inhibits ribosomal RNA processing. Mol. Cell 11, 415–424 (2003). Investigates the p53-independent growth suppressive activity of p19ARF. As ARF also prevents the proliferation of cells that lack p53, it is shown to be able to specifically retard the processing of ribosomal RNA precursors, an effect that requires neither p53 nor MDM2.

    Article  CAS  PubMed  Google Scholar 

  61. Lerch-Gaggl, A. et al. Pescadillo is essential for nucleolar assembly, ribosome biogenesis, and mammalian cell proliferation. J. Biol. Chem. 277, 45347–45355 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ye, K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol. Ther. 4, 918–923 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Kondo, T. et al. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15, 1275–1281 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, M. H., Chang, J. H. & Yung, B. Y. Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis 23, 93–100 (2002).

    Article  PubMed  Google Scholar 

  65. Romeo, G. et al. IRF-1 as a negative regulator of cell proliferation. J. Interferon Cytokine Res. 22, 39–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Li, J., Zhang, X., Sejas, D. P., Bagby, G. C. & Pang, Q. Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J. Biol. Chem. 279, 41275–41279 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Barber, G. N. Host defense, viruses and apoptosis. Cell Death Differ. 8, 113–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Jagus, R., Joshi, B. & Barber, G. N. PKR, apoptosis and cancer. Int. J. Biochem. Cell Biol. 31, 123–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Pang, Q. et al. Nucleophosmin interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR. J. Biol. Chem. 278, 41709–41717 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J., Zhang, X., Sejas, D. P. & Pang, Q. Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk. Res. (2005).

  71. Yung, B. Y., Busch, H. & Chan, P. K. Translocation of nucleolar phosphoprotein B23 (37 kDa/pI 5. 1) induced by selective inhibitors of ribosome synthesis. Biochim. Biophys. Acta 826, 167–173 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Yung, B. Y., Bor, A. M. & Chan, P. K. Short exposure to actinomycin D induces 'reversible' translocation of protein B23 as well as 'reversible' inhibition of cell growth and RNA synthesis in HeLa cells. Cancer Res. 50, 5987–5991 (1990).

    CAS  PubMed  Google Scholar 

  73. Chan, P. K., Aldrich, M. B. & Yung, B. Y. Nucleolar protein B23 translocation after doxorubicin treatment in murine tumor cells. Cancer Res. 47, 3798–3801 (1987).

    CAS  PubMed  Google Scholar 

  74. Bor, A. M., Chang, F. J. & Yung, B. Y. Phosphoprotein B23 translocation and modulation of actinomycin D and doxorubicin cytotoxicity by dipyridamole in HeLa cells. Int. J. Cancer 52, 658–663 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Chan, P. K. Characterization and cellular localization of nucleophosmin/B23 in HeLa cells treated with selected cytotoxic agents (studies of B23-translocation mechanism). Exp. Cell Res. 203, 174–181 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, M. H., Chang, J. H., Chou, C. C. & Yung, B. Y. Involvement of nucleophosmin/B23 in the response of HeLa cells to UV irradiation. Int. J. Cancer 97, 297–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Kurki, S. et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Fankhauser, C., Izaurralde, E., Adachi, Y., Wingfield, P. & Laemmli, U. K. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol. Cell. Biol. 11, 2567–2575 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, Y. P. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J. Virol. 71, 4098–4102 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Miyazaki, Y. et al. The cytotoxicity of human immunodeficiency virus type 1 Rev: implications for its interaction with the nucleolar protein B23. Exp. Cell Res. 219, 93–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, W. H., Yung, B. Y., Syu, W. J. & Lee, Y. H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J. Biol. Chem. 276, 25166–25175 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Chan, H. J., Weng, J. J. & Yung, B. Y. Nucleophosmin/B23-binding peptide inhibits tumor growth and up-regulates transcriptional activity of p53. Biochem. Biophys. Res. Commun. 333, 396–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell. Biol. 1, 20–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Bothner, B. et al. Defining the molecular basis of Arf and Hdm2 interactions. J. Mol. Biol. 314, 263–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Kuo, M. L., den Besten, W., Bertwistle, D., Roussel, M. F. & Sherr, C. J. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 18, 1862–1874 (2004). Shows that NPM, which binds to ARF with high stoichiometry, is able to retard ARF turnover. NPM is crucial for ARF stability, as ARF mutants that do not efficiently associate with NPM are unstable and functionally impaired.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    Article  CAS  Google Scholar 

  88. Sherr, C. J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Korgaonkar, C. et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol. Cell. Biol. 25, 1258–1271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Llanos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell. Biol. 3, 445–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Nakagawa, M., Kameoka, Y. & Suzuki, R. Nucleophosmin in acute myelogenous leukemia. N. Engl. J. Med. 352, 1819–1820; author reply 1819–1820 (2005).

    CAS  PubMed  Google Scholar 

  92. Falini, B. et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 107, 4514–4523 (2006). Elucidates the molecular mechanism of altered traffic of NPM and its cytoplasmic accumulation in NPMc+ AML.

    Article  CAS  PubMed  Google Scholar 

  93. den Besten, W., Kuo, M. L., Williams, R. T. & Sherr, C. J. Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 4, 1593–1598 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Colombo, E. et al. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res. 66, 3044–3050 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274, 36031–36034 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003). Shows that the nucleolus functions as a stress sensor that is responsible for the maintenance of low levels of p53 in proliferating cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Horn, H. F. & Vousden, K. H. Cancer: guarding the guardian? Nature 427, 110–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol. Cell. Biol. 21, 4246–4255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Colombo, E., Marine, J. C., Danovi, D., Falini, B. & Pelicci, P. G. Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell. Biol. 4, 529–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, X. W. et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl Acad. Sci. USA 96, 3706–3711 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hollander, M. C. et al. Genomic instability in Gadd45a-deficient mice. Nature Genet. 23, 176–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Gao, H. et al. B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J. Biol. Chem. 280, 10988–10996 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Lee, S. Y. et al. A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks. Biochem. J. 388, 7–15 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  107. Jiang, P. S., Chang, J. H. & Yung, B. Y. Different kinases phosphorylate nucleophosmin/B23 at different sites during G(2) and M phases of the cell cycle. Cancer Lett. 153, 151–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Okuda, M. et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103, 127–140 (2000). Identifies NPM as a substrate of the CDK2–cyclin E complex, and implicates it in the regulation of centrosome duplication in a cell-cycle-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  109. Chan, P. K., Liu, Q. R. & Durban, E. The major phosphorylation site of nucleophosmin (B23) is phosphorylated by a nuclear kinase II. Biochem. J. 270, 549–552 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60, 791–801 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Scheer, U. & Weisenberger, D. The nucleolus. Curr. Opin. Cell Biol. 6, 354–359 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Hernandez-Verdun, D. & Gautier, T. The chromosome periphery during mitosis. Bioessays 16, 179–185 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Dundr, M., Misteli, T. & Olson, M. O. The dynamics of postmitotic reassembly of the nucleolus. J. Cell Biol. 150, 433–446 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zatsepina, O. V. et al. The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J. Cell Sci. 112 (Pt 4), 455–466 (1999).

    CAS  PubMed  Google Scholar 

  115. Compton, D. A. & Cleveland, D. W. NuMA, a nuclear protein involved in mitosis and nuclear reformation. Curr. Opin. Cell Biol. 6, 343–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Yao, J. et al. Nek2A kinase regulates the localization of numatrin to centrosome in mitosis. FEBS Lett. 575, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, H. et al. B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J. Biol. Chem. 279, 35726–35734 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Meraldi, P. & Nigg, E. A. The centrosome cycle. FEBS Lett. 521, 9–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2–cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Fry, A. M., Schultz, S. J., Bartek, J. & Nigg, E. A. Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J. Biol. Chem. 270, 12899–12905 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Fry, A. M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. O'Connell, M. J., Krien, M. J. & Hunter, T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 13, 221–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Tokuyama, Y., Horn, H. F., Kawamura, K., Tarapore, P. & Fukasawa, K. Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529–21537 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Okuda, M. The role of nucleophosmin in centrosome duplication. Oncogene 21, 6170–6174 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, X. & Erikson, R. L. Polo-like kinase 1 in the life and death of cancer cells. Cell Cycle 2, 424–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Nishikawa, H. et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1–BARD1 ubiquitin ligase. J. Biol. Chem. 279, 3916–3924 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Sato, K. et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1–BARD1 ubiquitin ligase. J. Biol. Chem. 279, 30919–30922 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Xu, X. et al. Centrosome amplification and a defective G2–M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Saavedra, H. I. et al. Inactivation of E2F3 results in centrosome amplification. Cancer Cell 3, 333–346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bernard, K. et al. Functional proteomic analysis of melanoma progression. Cancer Res. 63, 6716–6725 (2003).

    CAS  PubMed  Google Scholar 

  133. Di Fiore, B., Ciciarello, M. & Lavia, P. Mitotic functions of the Ran GTPase network: the importance of being in the right place at the right time. Cell Cycle 3, 305–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Dasso, M. Running on Ran: nuclear transport and the mitotic spindle. Cell 104, 321–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Forgues, M. et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol. Cell. Biol. 23, 5282–5292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Keryer, G. et al. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol. Biol. Cell 14, 4260–4271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, W., Budhu, A., Forgues, M. & Wang, X. W. Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nature Cell Biol. 7, 823–830 (2005). The RAN–CRM1 network is involved in the regulation of centrosome duplication and proper formation of a bipolar spindle. NPM is proposed to be a RAN–CRM1 substrate in the control of centrosome duplication.

    Article  CAS  PubMed  Google Scholar 

  138. Shinmura, K., Tarapore, P., Tokuyama, Y., George, K. R. & Fukasawa, K. Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett. 579, 6621–6634 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Budhu, A. S. & Wang, X. W. Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1. Cell Cycle 4, 1510–1514 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Brunning, R.D. et al. in Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues CH.3 (eds Jaffe, E. S. et al.) 91–105 (IARC, Lyon, France, 2001).

    Google Scholar 

  141. Nishimura, Y., Ohkubo, T., Furuichi, Y. & Umekawa, H. Tryptophans 286 and 288 in the C-terminal region of protein B23.1 are important for its nucleolar localization. Biosci. Biotechnol. Biochem. 66, 2239–2242 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Duyster, J., Bai, R. Y. & Morris, S. W. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20, 5623–5637 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Falini, B. Anaplastic large cell lymphoma: pathological, molecular and clinical features. Br. J. Haematol. 114, 741–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Grimwade, D. et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action 'Molecular Cytogenetic Diagnosis in Haematological Malignancies'. Blood 96, 1297–1308 (2000).

    CAS  PubMed  Google Scholar 

  145. Redner, R. L. Variations on a theme: the alternate translocations in APL. Leukemia 16, 1927–1932 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Cazzaniga, G. et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 106, 1419–1422 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Sherr and J. Weber for constructive comments, and to J. Clohessy, R. Bernardi, L. DiSantis and the other members of the P.P.P. laboratory for discussion and critical reading of the manuscript. We apologize to those whose papers could not be cited owing to space limitations. The work of P.P.P. and B.F. is supported by the US National Cancer Institute and the Italian Association for Cancer Research (AIRC), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information, figure S1 and supplementary references (PDF 798 kb)

Related links

Related links

DATABASES

National Cancer Institute

AML

Kaposi sarcoma

non-small-cell lung carcinoma

FURTHER INFORMATION

Pier Paolo Pandolfi's homepage

Oncomine

Glossary

Chromosomal translocations

A translocation is the transfer of genetic material from one chromosome to another. Translocations between non-homologous chromosomes can bring two previously unlinked segments of the genome together, which in some cases can result in disease by inducing the inappropriate expression of a protein or the synthesis of a new fusion protein.

Nucleosome

The nucleosome is the fundamental repeating subunit of eukaryotic DNA. It is composed of DNA and histone proteins, the central core particles of the nucleosome. Nucleosomes are involved in a number of processes, including the compaction of DNA and transcriptional control.

SnoRNPs

Small nucleolar ribonucleoproteins are complexes of small nucleolar RNAs and proteins identified in eukaryotic cells. They function in pre-ribosomal RNA processing reactions and guide methylation and pseudouridylation of ribosomal RNA, spliceosomal small nuclear RNAs, and possibly other cellular RNAs.

Internal transcribed spacer

The ITS is a sequence in the precursor ribosomal RNA (rRNA) molecule, coded by ribosomal DNA. It lies between precursor ribosomal subunits, and is removed when the rRNA precursor is processed into a ribosome. Eukaryotic organisms have two internal transcribed spacers: ITS1 is located between the 18S gene and the 5.8S gene, while ITS2 is located between the 5.8S and the 28S gene.

Sumoylation

A post-translational modification that consists of covalent attachment of the small ubiquitin-like molecule, SUMO1 (also known as sentrin, PIC1). Sumoylation can change the ability of the modified protein to interact with other proteins and can interfere with its proteasomal degradation.

Genomic instability

Genomic instability indicates an increased tendency of the genome to acquire mutations when various processes involved in maintaining and replicating the genome are dysfunctional.

Centrosome

The centrosome is the main microtubule-organizing centre (MTOC) of the animal cell. It is composed of two orthogonally arranged centrioles surrounded by an amorphous mass of pericentriolar material. The centrosome duplicates before cell division, and each daughter MTOC functions as one pole of the mitotic-spindle apparatus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisendi, S., Mecucci, C., Falini, B. et al. Nucleophosmin and cancer. Nat Rev Cancer 6, 493–505 (2006). https://doi.org/10.1038/nrc1885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing