Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour microenvironment

TGFβ: the molecular Jekyll and Hyde of cancer

Key Points

  • TGFβ signalling is tumour suppressive in epithelial cells, whereas it can promote invasion and metastasis during the later stages of carcinoma progression.

  • During tumour progression, tumour cells frequently lose the growth-inhibitory response to TGFβ, and this is associated with an increased expression of TGFβ in the microenvironment.

  • TGFβ-mediated regulation in the tumour microenvironment can be attributed to many factors, including those that involve cell-autonomous signalling, stromal–epithelial interactions, inflammation, immune evasion and angiogenesis.

  • Cell-autonomous TGFβ signalling can cause epithelial–mesenchymal transitions (EMT) in carcinoma cells, which increase invasion and metastasis.

  • Conversely, the abrogation of carcinoma-cell-autonomous TGFβ signalling can increase metastasis in the apparent absence of EMT.

  • Together, the cell-type-dependent and context-dependent effects of TGFβ signalling contribute to the regulation of tumour initiation, progression and metastasis.

  • Despite the complex nature of TGFβ-mediated regulatory signalling in the tumour microenvironment, many aspects of signalling through this pathway have been targeted for therapeutic intervention using systemic and cell-specific strategies, with some indications of efficacy.

Abstract

Transforming growth factor-β (TGFβ) signalling regulates cancer through mechanisms that function either within the tumour cell itself or through host–tumour cell interactions. Studies of tumour-cell-autonomous TGFβ effects show clearly that TGFβ signalling has a mechanistic role in tumour suppression and tumour promotion. In addition, factors in the tumour microenvironment, such as fibroblasts, immune cells and the extracellular matrix, influence the ability of TGFβ to promote or suppress carcinoma progression and metastasis. The complex nature of TGFβ signalling and crosstalk in the tumour microenvironment presents a unique challenge, and an opportunity to develop therapeutic intervention strategies for targeting cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General overview of the main signalling networks regulated by TGFβ in cancer.
Figure 2: Targets for TGFβ-based therapeutic intervention in the tumour microenvironment.

Similar content being viewed by others

References

  1. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  2. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev 17, 29–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lin, H. Y., Wang, X. F., Ng-Eaton, E., Weinberg, R. A. & Lodish, H. F. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68, 775–785 (1992). Describes the initial cloning and characterization of the type II TGFβ receptor. The binding affinity of TGFβ1 and TGFβ2 was shown, along with an analysis of this receptor as a functional serine and threonine kinase.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X. F. et al. Expression cloning and characterization of the TGF-β type III receptor. Cell 67, 797–805 (1991). Describes the initial cloning and characterization of a type III TGFβ receptor. It was shown that the cloned type III receptor was able to bind TGFβ1 and increase the ligand affinity for the type II TGFβ receptor.

    Article  CAS  PubMed  Google Scholar 

  6. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  7. Munger, J. S. et al. The integrin-α v β 6 binds and activates latent TGF β 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, H. Y. et al. The soluble exoplasmic domain of the type II transforming growth factor (TGF)-β receptor. A heterogeneously glycosylated protein with high affinity and selectivity for TGF-β ligands. J. Biol. Chem. 270, 2747–2754 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Moustakas, A. et al. The transforming growth factor-β receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J. Biol. Chem. 268, 22215–22218 (1993).

    CAS  PubMed  Google Scholar 

  11. Gilboa, L., Wells, R. G., Lodish, H. F. & Henis, Y. I. Oligomeric structure of type I and type II transforming growth factor-β receptors: homodimers form in the ER and persist at the plasma membrane. J. Cell. Biol. 140, 767–777 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Wrana, J. L. et al. TGF β signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Luo, K. & Lodish, H. F. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15, 4485–4496 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng, X. H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. J. Biol. Chem. 271, 13123–13129 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Olivey, H. E., Mundell, N. A., Austin, A. F. & Barnett, J. V. Transforming growth factor-β stimulates epithelial-mesenchymal transformation in the proepicardium. Dev. Dyn. 235, 50–59 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Moustakas, A. & Heldin, C. H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005). The TGFβ pathway has been targeted for interactome mapping. This paper and supplementary material outlines the results from approximately 12,000 individual experimental reactions that resulted in the identification of a large number of new interactions.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, X. H. & Derynck, R. Specificity and versatility in tgf-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Article  CAS  Google Scholar 

  22. Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer-a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001).

    CAS  PubMed  Google Scholar 

  23. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature 431, 205–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, L. et al. A role for MEK kinase 1 in TGF-β/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22, 4443–4454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiu, C. et al. TGF-β-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Int. J. Mol. Med. 8, 251–255 (2001).

    CAS  PubMed  Google Scholar 

  27. Edlund, S., Landstrom, M., Heldin, C. H. & Aspenstrom, P. Smad7 is required for TGF-β-induced activation of the small GTPase Cdc42. J. Cell Sci. 117, 1835–1847 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F. & Weinberg, R. A. TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biol. 3, 708–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wilkes, M. C., Murphy, S. J., Garamszegi, N. & Leof, E. B. Cell-type-specific activation of PAK2 by transforming growth factor-β independent of Smad2 and Smad3. Mol. Cell Biol. 23, 8878–8889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mulder, K. M. & Morris, S. L. Activation of p21ras by transforming growth factor-β in epithelial cells. J. Biol. Chem. 267, 5029–5031 (1992).

    CAS  PubMed  Google Scholar 

  31. Yi, J. Y., Shin, I. & Arteaga, C. L. Type I transforming growth factor-β receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem. 280, 10870–10876 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12, 27–36 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Petritsch, C., Beug, H., Balmain, A. & Oft, M. TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev. 14, 3093–3101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995). This is the first conclusive study that links inactivation of the type II TGFβ receptor to cancer.

    Article  CAS  PubMed  Google Scholar 

  39. Grady, W. M. Genomic instability and colon cancer. Cancer Metastasis Rev. 23, 11–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Pasche, B. Role of transforming growth factor-β in cancer. J. Cell. Physiol. 186, 153–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bacon, A. L., Farrington, S. M. & Dunlop, M. G. Mutation frequency in coding and non-coding repeat sequences in mismatch repair deficient cells derived from normal human tissue. Oncogene 20, 7464–7471 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, S. J., Im, Y. H., Markowitz, S. D. & Bang, Y. J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 11, 159–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kang, S. H. et al. Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene 18, 7280–7286 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Lebrin, F., Deckers, M., Bertolino, P. & Ten Dijke, P. TGF-β receptor function in the endothelium. Cardiovasc Res. 65, 599–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Pangas, S. A. & Matzuk, M. M. Genetic models for transforming growth factor-β superfamily signaling in ovarian follicle development. Mol. Cell. Endocrinol. 225, 83–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Guy, C. T. et al. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 12, 954–961 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsui, Y., Halter, S. A., Holt, J. T., Hogan, B. L. & Coffey, R. J. Development of mammary hyperplasia and neoplasia in MMTV-TGF-α transgenic mice. Cell 61, 1147–1155 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nature Rev. Mol. Cell Biol. 6, 715–725 (2005).

    Article  CAS  Google Scholar 

  50. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006). Although it is not directly related to TGFβ signalling in cancer, this high-impact paper outlines a new method whereby a single mammary stem cell can be isolated that is able to produce myoepithelium, ductal and alveolar epithelium. A single cell from this population was able to reconstitute all the epithelial and myoepithelial cell types necessary to reconstitute a functional mammary gland when transplanted into a cleared mammary fat pad.

    Article  CAS  PubMed  Google Scholar 

  51. Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell 10, 1221–1234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen, A. V. & Pollard, J. W. Transforming growth factor β3 induces cell death during the first stage of mammary gland involution. Development 127, 3107–3118 (2000).

    CAS  PubMed  Google Scholar 

  53. Pierce, D. F., Jr. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev. 7, 2308–2317 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Boulanger, C. A. & Smith, G. H. Reducing mammary cancer risk through premature stem cell senescence. Oncogene 20, 2264–2272 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Boulanger, C. A., Wagner, K. U. & Smith, G. H. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 24, 552–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Jhappan, C. et al. Targeting expression of a transforming growth factor β 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12, 1835–1845 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kordon, E. C. et al. Ectopic TGF-β1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev. Biol. 168, 47–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Pierce, D. F., Jr. et al. Mammary tumor suppression by transforming growth factor-β1 transgene expression. Proc. Natl Acad. Sci. USA 92, 4254–4258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muraoka, R. S. et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor β1. Mol. Cell. Biol. 23, 8691–8703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Muraoka-Cook, R. S. et al. Conditional overexpression of active transforming growth factor β1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res. 64, 9002–9011 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Gorska, A. E. et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am. J. Pathol. 163, 1539–1549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lenferink, A. E., Magoon, J., Pepin, M. C., Guimond, A. & O'Connor-McCourt, M. D. Expression of TGF-β type II receptor antisense RNA impairs TGF-β signaling in vitro and promotes mammary gland differentiation in vivo. Int. J. Cancer 107, 919–928 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Forrester, E. et al. Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 65, 2296–2302 (2005). Outlined for the first time the effect of complete conditional type II TGFβ receptor ablation in the context of mammary development and tumourigenesis.

    Article  CAS  PubMed  Google Scholar 

  65. Ewan, K. B. et al. Latent transforming growth factor-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am. J. Pathol. 160, 2081–2093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ewan, K. B. et al. Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am. J. Pathol. 167, 409–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, B. et al. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest. 112, 1116–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muraoka-Cook, R. S. et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene (2005).

  69. Oft, M., Heider, K. H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sci. USA 100, 8430–8435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deckers, M. et al. The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66, 2202–2209 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Fowlis, D. J., Cui, W., Johnson, S. A., Balmain, A. & Akhurst, R. J. Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor β 1 in the skin of transgenic mice. Cell Growth Differ. 7, 679–687 (1996).

    CAS  PubMed  Google Scholar 

  74. Cui, W. et al. Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 9, 945–955 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Amendt, C., Schirmacher, P., Weber, H. & Blessing, M. Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Go, C. et al. Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGFβRII. Oncogene 19, 3623–3631 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Go, C., Li, P. & Wang, X. J. Blocking transforming growth factor-β signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res. 59, 2861–2868 (1999).

    CAS  PubMed  Google Scholar 

  78. Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA 96, 8483–8488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weeks, B. H., He, W., Olson, K. L. & Wang, X. J. Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res. 61, 7435–7443 (2001).

    CAS  PubMed  Google Scholar 

  80. Han, G. et al. Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest. 115, 1714–1723 (2005). Showed the effect of increased TGFβ expression with the concurrent expression of a dominant-negative type II receptor in the skin epithelium during carcinogenesis. The data show that the expression of TGFβ with a reduction in the tumour-cell-autonomous response to this pathway promotes progression to metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, X. J. et al. Expression of a dominant-negative type II transforming growth factor-β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition. Proc. Natl Acad. Sci. USA 94, 2386–2391 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004). Showed that TGFβ signalling in some fibroblast subpopulations can regulate the initiation of carcinoma in adjacent epithelia.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24, 5053–5068 (2005). Showed that TGFβ signalling in fibroblasts can regulate tumour progression in adjacent epithelium through distinct molecular mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hayward, S. W. et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 61, 8135–8142 (2001).

    CAS  PubMed  Google Scholar 

  85. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  86. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002). Showed that fibroblasts isolated from different parts of the body have distinct molecular profiles. The unique molecular identity of each fibroblast subpopulation was used to accurately identify the tissue from which it was derived.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giannouli, C. C. & Kletsas, D. TGF-β regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Cell. Signal. 14 Dec 2005 [epub ahead of print].

  88. Chen, W. & Wahl, S. M. TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev. 14, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. de Visser, K. E. & Kast, W. M. Effects of TGF-β on the immune system: implications for cancer immunotherapy. Leukemia 13, 1188–1199 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol. 2, 46–53 (2002).

    Article  CAS  Google Scholar 

  91. Wahl, S. M., Swisher, J., McCartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol. 76, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Goumans, M. J., Lebrin, F. & Valdimarsdottir, G. Controlling the angiogenic switch: a balance between two distinct TGF-β receptor signaling pathways. Trends Cardiovasc. Med. 13, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Muraoka-Cook, R. S., Dumont, N. & Arteaga, C. L. Dual role of transforming growth factor β in mammary tumorigenesis and metastatic progression. Clin. Cancer Res. 11, 937s–943s (2005).

    CAS  PubMed  Google Scholar 

  94. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kulkarni, A. B. et al. Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leveen, P. et al. Induced disruption of the transforming growth factor-β type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 100, 560–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruzek, M. C. et al. Minimal effects on immune parameters following chronic anti-TGF-β monoclonal antibody administration to normal mice. Immunopharmacol. Immunotoxicol. 25, 235–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002). Before this study it was not known if the systemic inhibition of TGFβ signalling would be a viable strategy for administration over a sustained duration in vivo . However, this report indicates that in mice, a sustained systemic inhibition of TGFβ does not result in any observed adverse effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov. 3, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  101. Smyth, M. J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176, 1582–1587 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Fontana, A., Constam, D. B., Frei, K., Malipiero, U. & Pfister, H. W. Modulation of the immune response by transforming growth factor-β. Int. Arch. Allergy Immunol. 99, 1–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Fontana, A., Bodmer, S., Frei, K., Malipiero, U. & Siepl, C. Expression of TGF-β2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found. Symp. 157, 232–238; discussion 238–241 (1991).

    CAS  PubMed  Google Scholar 

  104. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001). Blockade of TGFβ signalling in T cells resulted in a marked resistance to cancer when mice were challenged with live tumour cells. The resistance was shown to be the result of an efficient eradication of tumour cells owing to a robust immune response after the attenuation of TGFβ signalling in T cells.

    Article  CAS  PubMed  Google Scholar 

  105. Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Q. et al. Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res. 65, 1761–1769 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Peng, S. B. et al. Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44, 2293–2304 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Tojo, M. et al. The ALK-5 inhibitor A-83–01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-β. Cancer Sci. 96, 791–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Ge, R. et al. Selective inhibitors of type I receptor kinase block cellular transforming growth factor-β signaling. Biochem. Pharmacol. 68, 41–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. DaCosta Byfield, S., Major, C., Laping, N. J. & Roberts, A. B. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 65, 744–752 (2004).

    Article  PubMed  Google Scholar 

  111. Uhl, M. et al. SD-208, a novel transforming growth factor-β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64, 7954–7961 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 65–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Landis, M. D., Seachrist, D. D., Montanez-Wiscovich, M. E., Danielpour, D. & Keri, R. A. Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-β signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene 24, 5173–5190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshinaga, K. et al. Clinical significance of the expression of activin A in esophageal carcinoma. Int. J. Oncol. 22, 75–80 (2003).

    CAS  PubMed  Google Scholar 

  115. Subramanian, G. et al. Targeting endogenous transforming growth factor-β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res. 64, 5200–5211 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Cosgrove, D. et al. Integrin α1β1 and transforming growth factor-β1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bandyopadhyay, A. et al. A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res. 59, 5041–5046 (1999).

    CAS  PubMed  Google Scholar 

  118. Bandyopadhyay, A. et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res. 62, 4690–4695 (2002).

    CAS  PubMed  Google Scholar 

  119. Dasch, J. R., Pace, D. R., Waegell, W., Inenaga, D. & Ellingsworth, L. Monoclonal antibodies recognizing transforming growth factor-β. Bioactivity neutralization and transforming growth factor-β 2 affinity purification. J. Immunol. 142, 1536–1541 (1989).

    CAS  PubMed  Google Scholar 

  120. Cordeiro, M. F., Gay, J. A. & Khaw, P. T. Human anti-transforming growth factor-β2 antibody: a new glaucoma anti-scarring agent. Invest. Ophthalmol. Vis. Sci. 40, 2225–2234 (1999).

    CAS  PubMed  Google Scholar 

  121. Thompson, J. E. et al. A fully human antibody neutralising biologically active human TGFβ2 for use in therapy. J. Immunol. Methods 227, 17–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Lucas, C. et al. The autocrine production of transforming growth factor-β1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J. Immunol. 145, 1415–1422 (1990).

    CAS  PubMed  Google Scholar 

  123. Arteaga, C. L., Carty-Dugger, T., Moses, H. L., Hurd, S. D. & Pietenpol, J. A. Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ. 4, 193–201 (1993).

    CAS  PubMed  Google Scholar 

  124. Arteaga, C. L., Dugger, T. C., Winnier, A. R. & Forbes, J. T. Evidence for a positive role of transforming growth factor-β in human breast cancer cell tumorigenesis. J. Cell. Biochem. Suppl. 17G, 187–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Arteaga, C. L. et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J. Clin. Invest. 92, 2569–2576 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fakhrai, H. et al. Eradication of established intracranial rat gliomas by transforming growth factor-β antisense gene therapy. Proc. Natl Acad. Sci. USA 93, 2909–2914 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liau, L. M., Fakhrai, H. & Black, K. L. Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-β antisense gene. Neurol. Res. 20, 742–747 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Schlingensiepen, K. H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev. 17, 729–139 (2005).

    Google Scholar 

  129. Schlingensiepen, R. et al. Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15, 94–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nature Rev. Cancer 3, 695–701 (2003).

    Article  CAS  Google Scholar 

  131. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123, 1001–1011 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Desgrosellier, J. S., Mundell, N. A., McDonnell, M. A., Moses, H. L. & Barnett, J. V. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev. Biol. 280, 201–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Lai, Y. T. et al. Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation. Dev. Biol. 222, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Adams, D. H. et al. Transforming growth factor-β induces human T lymphocyte migration in vitro. J. Immunol. 147, 609–6012 (1991).

    CAS  PubMed  Google Scholar 

  138. Ahmadzadeh, M. & Rosenberg, S. A. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol. 174, 5215–5223 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Bogdan, C. & Nathan, C. Modulation of macrophage function by transforming growth factor β, interleukin-4, and interleukin-10. Ann. NY Acad. Sci. 685, 713–739 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Wahl, S. M. et al. Transforming growth factor-β is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J. Immunol. 140, 3026–3032 (1988).

    CAS  PubMed  Google Scholar 

  141. Bombara, C. & Ignotz, R. A. TGF-β inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells. J. Cell. Physiol. 153, 30–37 (1992).

    Article  CAS  PubMed  Google Scholar 

  142. Kitamura, M. Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-β 1. J. Immunol. 159, 1404–1411 (1997).

    CAS  PubMed  Google Scholar 

  143. Feinberg, M. W. et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ. Res. 94, 601–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McDonald, P. P., Fadok, V. A., Bratton, D. & Henson, P. M. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-β in macrophages that have ingested apoptotic cells. J. Immunol. 163, 6164–6172 (1999).

    CAS  PubMed  Google Scholar 

  146. Xiao, Y. Q. et al. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β. J. Biol. Chem. 277, 14884–14893 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, J. et al. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages. J. Biol. Chem. 276, 49236–49243 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Franitza, S. et al. TGF-β1 enhances SDF-1α-induced chemotaxis and homing of naive T cells by up-regulating CXCR4 expression and downstream cytoskeletal effector molecules. Eur. J. Immunol. 32, 193–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Geiser, A. G. et al. Transforming growth factor β1 (TGF-β1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype. Proc. Natl Acad. Sci. USA 90, 9944–9948 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, Y. J. et al. TGF-β suppresses IFN-γ induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. J. Immunol. 158, 2065–2075 (1997).

    CAS  PubMed  Google Scholar 

  152. Johns, L. D. et al. Transforming growth factor-β 1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures. Brain Res. 585, 229–236 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Ma, D. & Niederkorn, J. Y. Transforming growth factor-β down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology 86, 263–269 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Witham, T. F. et al. Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J. Neurooncol. 64, 63–69 (2003).

    PubMed  Google Scholar 

  155. Reibman, J. et al. Transforming growth factor β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc. Natl Acad. Sci. USA 88, 6805–6809 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, J. J., Sun, Y. & Nabel, G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Moses.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

pancreatic cancer

Glossary

Loss of heterozygosity

Tumour cells often lose large genomic regions at loci that often contain tumour-suppressor genes. In cells that carry a mutated allele of a tumour-suppressor gene, the loss of a large region from a chromosome that carries the wild-type allele can result in a complete loss of function.

Microsatellite instability

A condition associated with some cancers whereby a tumours associated genetic instability is due to defects in mismatch-repair gene products. The mutations associated with this type of genomic instability often occur in short nucleotide repeats.

Dominant-negative

A defective protein product that effectively inhibits the function of a wild-type counterpart by retaining essential interaction capabilities without a desired effector function.

Lobular-alveolar

Mammary epithelial cells that are able to differentiate into functional secretory units during pregnancy, and that can produce milk proteins during lactation.

Bigenic mice

Transgenic mice that concurrently express two minigene constructs.

Major histocompatibility complex

Genes that encode products that are necessary for the regulation of immune function. Class I and class II MHC genes are involved in antigen presentation and the regulation of self recognition.

Convection-enhanced delivery

A method of delivering compounds to the brain that circumvents the blood–brain barrier. This method enables a compound to be infused directly into a brain tumour under a controlled pressure and rate of release.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierie, B., Moses, H. TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506–520 (2006). https://doi.org/10.1038/nrc1926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing