Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis

Key Points

  • Endometrial cancer is the most common gynaecological malignancy.

  • Although no specific gene or genes have been linked to the majority of cases of endometrial cancer, several well-characterized oncogenes and tumour-suppressor genes have been implicated in endometrial carcinogenesis.

  • Approximately 80% of endometrial cancer cases are type I tumours, which are usually well differentiated and endometrioid in histology, and are associated with a history of unopposed oestrogen exposure or other hyperoestrogenic risk factors such as obesity.

  • Oestrogen and selective oestrogen-receptor modulators (SERMs) are implicated in endometrial carcinogenesis through regulation of gene transcription.

  • Oestrogen and SERMs exert their carcinogenic roles in the endometrium through their downstream molecular effectors such as PAX2 (paired box gene 2).

Abstract

Endometrial cancer is the most common gynaecological cancer, and is associated with endometrial hyperplasia, unopposed oestrogen exposure and adjuvant therapy for breast cancer using selective oestrogen-receptor modulators (SERMs), particularly tamoxifen. Oestrogen and SERMs are thought to be involved in endometrial carcinogenesis through their effects on transcriptional regulation. Ultimately, oestrogen and SERMs affect the transduction of cellular signalling pathways that govern cell growth and proliferation, through downstream effectors such as PAX2 (paired box 2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic action of oestrogen and tamoxifen in the uterus.
Figure 2: PAX2 in the endometrium.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).

    PubMed  Google Scholar 

  2. Bray, F., dos Santos Silva, I., Moller, H. & Weiderpass, E. Endometrial cancer incidence trends in europe: underlying determinants and prospects for prevention. Cancer Epidemiol. Biomarkers Prev. 14, 1132–1142 (2005).

    PubMed  Google Scholar 

  3. Amant, F. et al. Endometrial cancer. The Lancet 366, 491–505 (2005). A thorough and excellent discussion of current concepts about epidemiology, pathology, pathogenesis, risk factors and prevention, diagnosis, staging, prognostic factors, treatment and follow-up of endometrial cancer.

    Google Scholar 

  4. Ollikainen, M. et al. Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J. Clin. Oncol. 23, 4609–4616 (2005).

    CAS  PubMed  Google Scholar 

  5. Dunlop, M. et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum. Mol. Genet. 6, 105–110 (1997).

    CAS  PubMed  Google Scholar 

  6. Parc, Y. R. et al. Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: associations with family history and histopathology. Int. J. Cancer 86, 60–66 (2000).

    CAS  PubMed  Google Scholar 

  7. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710 (2005).

    CAS  PubMed  Google Scholar 

  8. Marti, T. M., Kunz, C. & Fleck, O. DNA mismatch repair and mutation avoidance pathways. J. Cell Physiol. 191, 28–41 (2002).

    CAS  PubMed  Google Scholar 

  9. Enomoto, T. et al. K-ras activation in premalignant and malignant epithelial lesions of the human uterus. Cancer Res. 51, 5308–5314 (1991).

    CAS  PubMed  Google Scholar 

  10. Lagarda, H., Catasus, L., Arguelles, R., Matias-Guiu, X. & Prat, J. K-ras mutations in endometrial carcinomas with microsatellite instability. J. Pathol. 193, 193–199 (2001).

    CAS  PubMed  Google Scholar 

  11. Lax, S. F., Kendall, B., Tashiro, H., Slebos, R. J. & Hedrick, L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88, 814–824 (2000).

    CAS  PubMed  Google Scholar 

  12. Niederacher, D. et al. Mutations and amplification of oncogenes in endometrial cancer. Oncology 56, 59–65 (1999).

    CAS  PubMed  Google Scholar 

  13. Saffari, B. et al. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 55, 5693–5698 (1995).

    CAS  PubMed  Google Scholar 

  14. Scholten, A. N., Creutzberg, C. L., van den Broek, L. J., Noordijk, E. M. & Smit, V. T. Nuclear β-catenin is a molecular feature of type I endometrial carcinoma. J. Pathol. 201, 460–465 (2003).

    CAS  PubMed  Google Scholar 

  15. Moreno-Bueno, G. et al. Abnormalities of the APC/β-catenin pathway in endometrial cancer. Oncogene 21, 7981–7990 (2002).

    CAS  PubMed  Google Scholar 

  16. Schlosshauer, P. W., Ellenson, L. H. & Soslow, R. A. β-Catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod. Pathol. 15, 1032–1037 (2002).

    PubMed  Google Scholar 

  17. Mutter, G. L. et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J. Natl Cancer Inst. 92, 924–930 (2000).

    CAS  PubMed  Google Scholar 

  18. Risinger, J. I., Hayes, A. K., Berchuck, A. & Barrett, J. C. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 57, 4736–4738 (1997).

    CAS  PubMed  Google Scholar 

  19. Obata, K. et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 58, 2095–2097 (1998).

    CAS  PubMed  Google Scholar 

  20. Kounelis, S. et al. Immunohistochemical profile of endometrial adenocarcinoma: a study of 61 cases and review of the literature. Mod. Pathol. 13, 379–388 (2000).

    CAS  PubMed  Google Scholar 

  21. Moll, U. M., Chalas, E., Auguste, M., Meaney, D. & Chumas, J. Uterine papillary serous carcinoma evolves via a p53-driven pathway. Hum. Pathol. 27, 1295–1300 (1996).

    CAS  PubMed  Google Scholar 

  22. Zheng, W., Cao, P., Zheng, M., Kramer, E. E. & Godwin, T. A. p53 overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes. Gynecol. Oncol. 61, 167–174 (1996).

    CAS  PubMed  Google Scholar 

  23. Shapiro, S. et al. Recent and past use of conjugated estrogens in relation to adenocarcinoma of the endometrium. N. Engl. J. Med. 303, 485–489 (1980).

    CAS  PubMed  Google Scholar 

  24. Cole, M. P., Jones, C. T. & Todd, I. D. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br. J. Cancer 25, 270–275 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward, H. W. Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br. Med. J. 1, 13–14 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    CAS  PubMed  Google Scholar 

  27. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall, J. M. & McDonnell, D. P. The estrogen receptor β-isoform (ERβ) of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140, 5566–5578 (1999).

    CAS  PubMed  Google Scholar 

  29. McDonnell, D. P. & Norris, J. D. Connections and regulation of the human estrogen receptor. Science 296, 1642–1644 (2002). An excellent review that provides an extensive overview of the mechanistic actions of ERs.

    CAS  PubMed  Google Scholar 

  30. McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20, 321–344 (1999).

    CAS  PubMed  Google Scholar 

  31. Kushner, P. J. et al. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74, 311–317 (2000).

    CAS  PubMed  Google Scholar 

  32. Kushner, P. J. et al. Oestrogen receptor function at classical and alternative response elements. Novartis Found. Symp. 230, 20–26 (2000).

    CAS  PubMed  Google Scholar 

  33. Watanabe, T. et al. Isolation of estrogen-responsive genes with a CpG island library. Mol. Cell. Biol. 18, 442–449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dubik, D. & Shiu, R. P. Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7, 1587–1594 (1992).

    CAS  PubMed  Google Scholar 

  35. Umayahara, Y. et al. Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J. Biol. Chem. 269, 16433–16442 (1994).

    CAS  PubMed  Google Scholar 

  36. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    CAS  PubMed  Google Scholar 

  37. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    CAS  PubMed  Google Scholar 

  38. Smith, C. L. & O'Malley, B. W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25, 45–71 (2004).

    CAS  PubMed  Google Scholar 

  39. Barkhem, T., Nilsson, S. & Gustafsson, J. A. Molecular mechanisms, physiological consequences and pharmacological implications of estrogen receptor action. Am. J. Pharmacogenomics 4, 19–28 (2004).

    CAS  PubMed  Google Scholar 

  40. Fu, M., Wang, C., Zhang, X. & Pestell, R. Nuclear receptor modifications and endocrine cell proliferation. J. Steroid Biochem. Mol. Biol. 85, 133–138 (2003).

    CAS  PubMed  Google Scholar 

  41. Wang, C. et al. Direct acetylation of the estrogen receptor α hinge region by p300 regulates transactivation and hormone sensitivity. J. Biol. Chem. 276, 18375–18383 (2001).

    CAS  PubMed  Google Scholar 

  42. Wijayaratne, A. L. & McDonnell, D. P. The human estrogen receptor-α is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J. Biol. Chem. 276, 35684–35692 (2001).

    CAS  PubMed  Google Scholar 

  43. Tateishi, Y. et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO J. 23, 4813–4823 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Szego, C. M. & Davis, J. S. Adenosine 3′,5′-monophosphate in rat uterus: acute elevation by estrogen. Proc. Natl Acad. Sci. USA 58, 1711–1718 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjornstrom, L. & Sjoberg, M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842 (2005).

    PubMed  Google Scholar 

  46. Kuiper, G. G. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138, 863–870 (1997).

    CAS  PubMed  Google Scholar 

  47. Lecce, G., Meduri, G., Ancelin, M., Bergeron, C. & Perrot-Applanat, M. Presence of estrogen receptor β in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J. Clin. Endocrinol. Metab. 86, 1379–1386 (2001).

    CAS  PubMed  Google Scholar 

  48. Weihua, Z. et al. Estrogen receptor (ER) β, a modulator of ERα in the uterus. Proc. Natl Acad. Sci. USA 97, 5936–5941 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jazaeri, A. A. et al. Well-differentiated endometrial adenocarcinomas and poorly differentiated mixed mullerian tumors have altered ER and PR isoform expression. Oncogene 20, 6965–6969 (2001).

    CAS  PubMed  Google Scholar 

  50. Saegusa, M. & Okayasu, I. Changes in expression of estrogen receptors α and β in relation to progesterone receptor and pS2 status in normal and malignant endometrium. Jpn J. Cancer Res. 91, 510–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Horvath, G., Leser, G., Hahlin, M. & Henriksson, M. Exon deletions and variants of human estrogen receptor mRNA in endometrial hyperplasia and adenocarcinoma. Int. J. Gynecol. Cancer 10, 128–136 (2000).

    PubMed  Google Scholar 

  52. Bryant, W., Snowhite, A. E., Rice, L. W. & Shupnik, M. A. The estrogen receptor (ER)α variant δ5 exhibits dominant positive activity on ER-regulated promoters in endometrial carcinoma cells. Endocrinology 146, 751–759 (2005).

    CAS  PubMed  Google Scholar 

  53. Herynk, M. H. & Fuqua, S. A. Estrogen receptor mutations in human disease. Endocr. Rev. 25, 869–898 (2004).

    CAS  PubMed  Google Scholar 

  54. Ogawa, S. et al. Molecular cloning and characterization of human estrogen receptor βcx: a potential inhibitor ofestrogen action in human. Nucleic Acids Res. 26, 3505–3512 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Saji, S. et al. Expression of estrogen receptor (ER) (β)cx protein in ER(α)-positive breast cancer: specific correlation with progesterone receptor. Cancer Res. 62, 4849–4853 (2002).

    CAS  PubMed  Google Scholar 

  56. Critchley, H. O. et al. Wild-type estrogen receptor (ERβ1) and the splice variant (ERβcx/β2) are both expressed within the human endometrium throughout the normal menstrual cycle. J. Clin. Endocrinol. Metab. 87, 5265–5273 (2002).

    CAS  PubMed  Google Scholar 

  57. Skrzypczak, M. et al. Evaluation of mRNA expression of estrogen receptor β and its isoforms in human normal and neoplastic endometrium. Int. J. Cancer 110, 783–787 (2004).

    CAS  PubMed  Google Scholar 

  58. Goldstein, S. R. The effect of SERMs on the endometrium. Ann. NY Acad. Sci. 949, 237–242 (2001).

    CAS  PubMed  Google Scholar 

  59. Jordan, V. C., Gapstur, S. & Morrow, M. Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J. Natl Cancer Inst. 93, 1449–1457 (2001).

    CAS  PubMed  Google Scholar 

  60. Jordan, V. C. Is tamoxifen the Rosetta stone for breast cancer? J. Natl Cancer Inst. 95, 338–340 (2003).

    PubMed  Google Scholar 

  61. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nature Rev. Drug Discov. 2, 205–213 (2003).

    CAS  Google Scholar 

  62. Jordan, V. C. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5, 207–213 (2004). As a pioneer in the field of SERM research and application, the lead author in references 59–62 discusses the historical perspective, tissue specificity, mechanistic actions and clinical implications of SERMs.

    CAS  PubMed  Google Scholar 

  63. Smith, R. E. & Good, B. C. Chemoprevention of breast cancer and the trials of the National Surgical Adjuvant Breast and Bowel Project and others. Endocr. Relat. Cancer 10, 347–357 (2003).

    CAS  PubMed  Google Scholar 

  64. Goldstein, S. R. et al. A 12-month comparative study of raloxifene, estrogen, and placebo on the postmenopausal endometrium. Obstet. Gynecol. 95, 95–103 (2000).

    CAS  PubMed  Google Scholar 

  65. Sporn, M. B. Arzoxifene: a promising new selective estrogen receptor modulator for clinical chemoprevention of breast cancer. Clin. Cancer Res. 10, 5313–5315 (2004).

    CAS  PubMed  Google Scholar 

  66. Martel, C. et al. Prevention of bone loss by EM-800 and raloxifene in the ovariectomized rat. J. Steroid Biochem. Mol. Biol. 74, 45–56 (2000).

    CAS  PubMed  Google Scholar 

  67. Willson, T. M. et al. 3-[4-(1, 2-Diphenylbut-1-enyl)phenyl]acrylic acid: a non-steroidal estrogen with functional selectivity for bone over uterus in rats. J. Med. Chem. 37, 1550–1552 (1994).

    CAS  PubMed  Google Scholar 

  68. Simoncini, T. et al. Genomic and nongenomic mechanisms of nitric oxide synthesis induction in human endothelial cells by a fourth-generation selective estrogen receptor modulator. Endocrinology 143, 2052–2061 (2002).

    CAS  PubMed  Google Scholar 

  69. Brady, H. et al. Effects of SP500263, a novel, potent antiestrogen, on breast cancer cells and in xenograft models. Cancer Res. 62, 1439–1442 (2002).

    CAS  PubMed  Google Scholar 

  70. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    CAS  PubMed  Google Scholar 

  71. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    CAS  PubMed  Google Scholar 

  72. Tanenbaum, D. M., Wang, Y., Williams, S. P. & Sigler, P. B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl Acad. Sci. USA 95, 5998–6003 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pike, A. C. et al. Structural insights into the mode of action of a pure antiestrogen. Structure 9, 145–153 (2001).

    CAS  PubMed  Google Scholar 

  74. Jordan, V. C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem. 46, 883–908 (2003).

    CAS  PubMed  Google Scholar 

  75. Jordan, V. C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem. 46, 1081–1111 (2003).

    CAS  PubMed  Google Scholar 

  76. Paige, L. A. et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER α and ER β. Proc. Natl Acad. Sci. USA 96, 3999–4004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McDonnell, D. P. Mining the complexities of the estrogen signaling pathways for novel therapeutics. Endocrinology 144, 4237–4240 (2003).

    CAS  PubMed  Google Scholar 

  78. McDonnell, D. P. The molecular pharmacology of SERMs. Trends Endocrinol. Metab. 10, 301–311 (1999).

    CAS  PubMed  Google Scholar 

  79. Carmichael, P. L. et al. Lack of evidence from HPLC 32P-post-labelling for tamoxifen–DNA adducts in the human endometrium. Carcinogenesis 20, 339–342 (1999).

    CAS  PubMed  Google Scholar 

  80. Beland, F. A., McDaniel, L. P. & Marques, M. M. Comparison of the DNA adducts formed by tamoxifen and 4-hydroxytamoxifen in vivo. Carcinogenesis 20, 471–477 (1999).

    CAS  PubMed  Google Scholar 

  81. Bartsch, H. et al. Lack of evidence for tamoxifen- and toremifene-DNA adducts in lymphocytes of treated patients. Carcinogenesis 21, 845–847 (2000).

    CAS  PubMed  Google Scholar 

  82. Shibutani, S. et al. Identification of tamoxifen-DNA adducts in the endometrium of women treated with tamoxifen. Carcinogenesis 21, 1461–1467 (2000).

    CAS  PubMed  Google Scholar 

  83. Phillips, D. H. Understanding the genotoxicity of tamoxifen? Carcinogenesis 22, 839–849 (2001).

    CAS  PubMed  Google Scholar 

  84. Schild, L. J. et al. Formation of tamoxifen–DNA adducts in multiple organs of adult female cynomolgus monkeys dosed with tamoxifen for 30 days. Cancer Res. 63, 5999–6003 (2003).

    CAS  PubMed  Google Scholar 

  85. Shibutani, S. et al. Identification of tamoxifen-DNA adducts in monkeys treated with tamoxifen. Cancer Res. 63, 4402–4406 (2003).

    CAS  PubMed  Google Scholar 

  86. Watanabe, T. et al. Agonistic effect of tamoxifen is dependent on cell type, ERE-promoter context, and estrogen receptor subtype: functional difference between estrogen receptors α and β. Biochem. Biophys. Res. Commun. 236, 140–145 (1997).

    CAS  PubMed  Google Scholar 

  87. Robertson, J. A., Bhattacharyya, S. & Ing, N. H. Tamoxifen up-regulates oestrogen receptor-α, c-fos and glyceraldehyde 3-phosphate-dehydrogenase mRNAs in ovine endometrium. J. Steroid Biochem. Mol. Biol. 67, 285–292 (1998).

    CAS  PubMed  Google Scholar 

  88. Jones, P. S., Parrott, E. & White, I. N. Activation of transcription by estrogen receptor α and β is cell type- and promoter-dependent. J. Biol. Chem. 274, 32008–32014 (1999).

    CAS  PubMed  Google Scholar 

  89. Russo, L. A., Calabro, S. P., Filler, T. A., Carey, D. J. & Gardner, R. M. In vivo regulation of syndecan-3 expression in the rat uterus by 17 β-estradiol. J. Biol. Chem. 276, 686–692 (2001).

    CAS  PubMed  Google Scholar 

  90. Dardes, R. C. et al. Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells. Gynecol. Oncol. 85, 498–506 (2002).

    CAS  PubMed  Google Scholar 

  91. Wang, Z. et al. Tamoxifen regulates human telomerase reverse transcriptase (hTERT) gene expression differently in breast and endometrial cancer cells. Oncogene 21, 3517–3524 (2002).

    CAS  PubMed  Google Scholar 

  92. Hague, S. et al. Tamoxifen induction of angiogenic factor expression in endometrium. Br. J. Cancer 86, 761–767 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sakamoto, T. et al. Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol. Cell. Endocrinol. 192, 93–104 (2002).

    CAS  PubMed  Google Scholar 

  94. Castro-Rivera, E. & Safe, S. 17 β-estradiol- and 4-hydroxytamoxifen-induced transactivation in breast, endometrial and liver cancer cells is dependent on ER-subtype, cell and promoter context. J. Steroid Biochem. Mol. Biol. 84, 23–31 (2003).

    CAS  PubMed  Google Scholar 

  95. Bramlett, K. S. & Burris, T. P. Target specificity of selective estrogen receptor modulators within human endometrial cancer cells. J. Steroid Biochem. Mol. Biol. 86, 27–34 (2003).

    CAS  PubMed  Google Scholar 

  96. Paech, K. et al. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277, 1508–1510 (1997).

    CAS  PubMed  Google Scholar 

  97. Webb, P., Nguyen, P. & Kushner, P. J. Differential SERM effects on corepressor binding dictate ERα activity in vivo. J. Biol. Chem. 278, 6912–6920 (2003).

    CAS  PubMed  Google Scholar 

  98. Klotz, D. M., Hewitt, S. C., Korach, K. S. & Diaugustine, R. P. Activation of a uterine insulin-like growth factor I signaling pathway by clinical and environmental estrogens: requirement of estrogen receptor-α. Endocrinology 141, 3430–3439 (2000).

    CAS  PubMed  Google Scholar 

  99. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    CAS  PubMed  Google Scholar 

  100. Katzenellenbogen, B. S. et al. Antiestrogens: mechanisms and actions in target cells. J. Steroid Biochem. Mol. Biol. 53, 387–393 (1995).

    CAS  PubMed  Google Scholar 

  101. Montano, M. M., Muller, V., Trobaugh, A. & Katzenellenbogen, B. S. The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol. Endocrinol. 9, 814–825 (1995).

    CAS  PubMed  Google Scholar 

  102. McInerney, E. M., Tsai, M. J., O'Malley, B. W. & Katzenellenbogen, B. S. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc. Natl Acad. Sci. USA 93, 10069–10073 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, C. L., Nawaz, Z. & O'Malley, B. W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666 (1997).

    CAS  PubMed  Google Scholar 

  104. Webb, P. et al. Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12, 1605–1618 (1998).

    CAS  PubMed  Google Scholar 

  105. Jackson, T. A. et al. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11, 693–705 (1997).

    CAS  PubMed  Google Scholar 

  106. Wu, H. et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981–987 (2005).

    CAS  PubMed  Google Scholar 

  107. Pole, J., Carmichael, P. & Griffin, J. Identification of transcriptional biomarkers induced by SERMS in human endometrial cells using multivariate analysis of DNA microarrays. Biomarkers 9, 447–460 (2004).

    CAS  PubMed  Google Scholar 

  108. Pole, J. C., Gold, L. I., Orton, T., Huby, R. & Carmichael, P. L. Gene expression changes induced by estrogen and selective estrogen receptor modulators in primary-cultured human endometrial cells: signals that distinguish the human carcinogen tamoxifen. Toxicology 206, 91–109 (2005).

    CAS  PubMed  Google Scholar 

  109. Farnell, Y. Z. & Ing, N. H. Endometrial effects of selective estrogen receptor modulators (SERMs) on estradiol-responsive gene expression are gene and cell-specific. J. Steroid Biochem. Mol. Biol. 84, 513–526 (2003).

    CAS  PubMed  Google Scholar 

  110. Saville, B. et al. Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J. Biol. Chem. 275, 5379–5387 (2000).

    CAS  PubMed  Google Scholar 

  111. Fournier, B. et al. Estrogen receptor (ER)-α, but not ER-β, mediates regulation of the insulin-like growth factor I gene by antiestrogens. J. Biol. Chem. 276, 35444–35449 (2001).

    CAS  PubMed  Google Scholar 

  112. Berry, M., Metzger, D. & Chambon, P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9, 2811–2818 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Metzger, D., Losson, R., Bornert, J. M., Lemoine, Y. & Chambon, P. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res. 20, 2813–2817 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tzukerman, M. T. et al. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 8, 21–30 (1994).

    CAS  PubMed  Google Scholar 

  115. Pham, T. A., Hwung, Y. P., Santiso, D., McDonnell, D. P. & O'Malley, B. W. Ligand-dependent and -independent function of the transactivation regions of the human estrogen receptor in yeast. Mol. Endocrinol. 6, 1043–1050 (1992).

    CAS  PubMed  Google Scholar 

  116. Mansouri, A., Goudreau, G. & Gruss, P. Pax genes and their role in organogenesis. Cancer Res. 59, 1707s–1709s (1999).

    CAS  PubMed  Google Scholar 

  117. Chi, N. & Epstein, J. A. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 18, 41–47 (2002).

    CAS  PubMed  Google Scholar 

  118. Stuart, E. T. & Gruss, P. PAX: developmental control genes in cell growth and differentiation. Cell Growth Differ. 7, 405–412 (1996).

    CAS  PubMed  Google Scholar 

  119. Hutson, M. R., Lewis, J. E., Nguyen-Luu, D., Lindberg, K. H. & Barald, K. F. Expression of Pax2 and patterning of the chick inner ear. J. Neurocytol. 28, 795–807 (1999).

    CAS  PubMed  Google Scholar 

  120. Joly, D. et al. Pax2 in the development of renal and urinary tract diseases. Adv. Nephrol. Necker Hosp. 29, 317–327 (1999).

    CAS  PubMed  Google Scholar 

  121. Eccles, M. R. et al. PAX genes in development and disease: the role of PAX2 in urogenital tract development. Int. J. Dev. Biol. 46, 535–544 (2002).

    CAS  PubMed  Google Scholar 

  122. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  123. Torres, M., Gomez-Pardo, E. & Gruss, P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381–3391 (1996).

    CAS  PubMed  Google Scholar 

  124. Favor, J. et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl Acad. Sci. USA 93, 13870–13875 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kroll, T. G. et al. PAX8PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    CAS  PubMed  Google Scholar 

  126. Cazzaniga, G. et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 61, 4666–4670 (2001).

    CAS  PubMed  Google Scholar 

  127. Murer, L. et al. Expression of nuclear transcription factor PAX2 in renal biopsies of juvenile nephronophthisis. Nephron 91, 588–593 (2002).

    CAS  PubMed  Google Scholar 

  128. Marques, A. R. et al. Expression of PAX8-PPAR γ 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  129. Robson, E. J., He, S. J. & Eccles, M. R. A PANorama of PAX genes in cancer and development. Nature Rev. Cancer 6, 52–62 (2006). A thoughtful and up-to-date review of the oncogenic roles of Pax genes.

    CAS  Google Scholar 

  130. Racz, A. et al. Gene amplification at chromosome 1pter-p33 including the genes PAX7 and ENO1 in squamous cell lung carcinoma. Int. J. Oncol. 17, 67–73 (2000).

    CAS  PubMed  Google Scholar 

  131. Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746 (2001).

    CAS  PubMed  Google Scholar 

  132. Nishimoto, K. et al. PAX2 gene mutation in a family with isolated renal hypoplasia. J. Am. Soc. Nephrol. 12, 1769–1772 (2001).

    CAS  PubMed  Google Scholar 

  133. Salomon, R. et al. PAX2 mutations in oligomeganephronia. Kidney Int. 59, 457–462 (2001).

    CAS  PubMed  Google Scholar 

  134. Scholl, F. A. et al. PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res. 61, 823–826 (2001).

    CAS  PubMed  Google Scholar 

  135. Muratovska, A., Zhou, C., He, S., Goodyer, P. & Eccles, M. R. Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 7989–7997 (2003).

    PubMed  Google Scholar 

  136. Maulbecker, C. C. & Gruss, P. The oncogenic potential of Pax genes. EMBO J. 12, 2361–2367 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Stuart, E. T. & Gruss, P. PAX genes: what's new in developmental biology and cancer? Hum. Mol. Genet. 4, s1717–s1720 (1995).

    Google Scholar 

  138. Silberstein, G. B., Dressler, G. R. & Van Horn, K. Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene 21, 1009–1016 (2002).

    CAS  PubMed  Google Scholar 

  139. Khoubehi, B. et al. Expression of the developmental and oncogenic PAX2 gene in human prostate cancer. J. Urol. 165, 2115–2120 (2001).

    CAS  PubMed  Google Scholar 

  140. Dressler, G. R. & Douglass, E. C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Natl Acad. Sci. USA 89, 1179–1183 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Eccles, M. R. et al. Expression of the PAX2 gene in human fetal kidney and Wilms' tumor. Cell Growth Differ. 3, 279–289 (1992).

    CAS  PubMed  Google Scholar 

  142. Eccles, M. R., Yun, K., Reeve, A. E. & Fidler, A. E. Comparative in situ hybridization analysis of PAX2, PAX8, and WT1 gene transcription in human fetal kidney and Wilms' tumors. Am. J. Pathol. 146, 40–45 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cho, K. S., Elizondo, L. I. & Boerkoel, C. F. Advances in chromatin remodeling and human disease. Curr. Opin. Genet. Dev. 14, 308–315 (2004).

    CAS  PubMed  Google Scholar 

  144. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).

    CAS  PubMed  Google Scholar 

  145. McConnell, M. J., Cunliffe, H. E., Chua, L. J., Ward, T. A. & Eccles, M. R. Differential regulation of the human Wilms tumour suppressor gene (WT1) promoter by two isoforms of PAX2. Oncogene 14, 2689–2700 (1997).

    CAS  PubMed  Google Scholar 

  146. Dehbi, M., Ghahremani, M., Lechner, M., Dressler, G. & Pelletier, J. The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13, 447–453 (1996).

    CAS  PubMed  Google Scholar 

  147. Brophy, P. D., Lang, K. M. & Dressler, G. R. The secreted frizzled related protein 2 (SFRP2) gene is a target of the Pax2 transcription factor. J. Biol. Chem. 278, 52401–5245 (2003).

    CAS  PubMed  Google Scholar 

  148. Cummings, S. R. et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281, 2189–2197 (1999).

    CAS  PubMed  Google Scholar 

  149. Risinger, J. I., Maxwell, G. L., Berchuck, A. & Barrett, J. C. Promoter hypermethylation as an epigenetic component in Type I and Type II endometrial cancers. Ann. NY Acad. Sci. 983, 208–212 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in laboratory of Y.S. was supported by grants from the National Natural Science Foundation of China and by the '863 Program' and the '973 Program' of the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

endometrial cancer

Wilms' tumour

FURTHER INFORMATION

Breast Cancer Prevention Trial

National Surgical Adjuvant Breast and Bowel Project

The Study of Tamoxifen and Raloxifene

United States National Toxicology Program listed steroidal oestrogens as carcinogens (2002)

Glossary

Endometrioid

A tumour containing epithelial or stromal elements resembling endometrial tissue.

SERMs

A group of chemical compounds that are structurally related to oestrogens, biochemically bind to oestrogen receptors, and functionally exert different effects on different tissues.

Second-, third- and fourth-generation SERMs

Chemical compounds that are developed in different stages and are intended to improve the beneficial effects and reduce the harmful effects of original SERMs.

Genotoxicity

Effects that cause genetic mutations and/or changes in chromosome structure and number.

Canonical

Standard or well-established and recognized DNA sequences to which transcription factors bind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y. Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 6, 360–368 (2006). https://doi.org/10.1038/nrc1879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing