Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis

Key Points

  • The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) signalling pathway is one of the most commonly altered pathways in human tumours. However, mutations of the PTEN gene itself account for only a fraction of these molecular changes.

  • The PI3K–PTEN pathway promotes cell survival and proliferation, increases in cell size and chemoresistance. Each of these biological outcomes results from the interaction of this pathway with other signalling networks.

  • Ras and its downstream effectors can activate components of the PI3K–PTEN pathway through numerous mechanisms. Each mechanism might be restricted to a particular tumour type, allowing the design of a specific therapy that kills cancer cells but leaves normal tissue unharmed.

  • Crosstalk between the PI3K–PTEN and p53 pathways occurs at multiple nodes in these pathways. When both PTEN and p53 are inactivated by mutations, malignancy is promoted in a synergistic manner.

  • The Ras, PI3K–PTEN and p53 pathways all converge either directly or indirectly on the tumour suppressor TSC2, indicating a crucial role for this molecule in the integration of multiple signals.

  • DJ1 is a novel regulator of the PI3K–PTEN pathway and is associated with breast and lung cancers.

  • The multiple pathways that influence the PI3K–PTEN signalling network do so through a variety of mechanisms, providing numerous potential drug targets. Drugs that act on these targets could be formulated to work either synergistically with agents that act directly on PI3K or on elements that function downstream of mutated pathway components. These drugs might offer an attractive additional or alternative approach to combating PI3K-dependent tumours.

Abstract

The tumour-suppressor phosphatase with tensin homology (PTEN) is the most important negative regulator of the cell-survival signalling pathway initiated by phosphatidylinositol 3-kinase (PI3K). Although PTEN is mutated or deleted in many tumours, deregulation of the PI3K–PTEN network also occurs through other mechanisms. Crosstalk between the PI3K pathways and other tumorigenic signalling pathways, such as those that involve Ras, p53, TOR (target of rapamycin) or DJ1, can contribute to this deregulation. How does the PI3K pathway integrate signals from numerous sources, and how can this information be used in the rational design of cancer therapies?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PI3K–PTEN signalling network.

Similar content being viewed by others

References

  1. Stambolic, V. et al. Negative regulation of PKB/AKT-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    CAS  PubMed  Google Scholar 

  2. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  3. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  4. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    CAS  PubMed  Google Scholar 

  5. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    CAS  PubMed  Google Scholar 

  6. Shi, W. et al. Dysregulated PTEN–PKB and negative receptor status in human breast cancer. Int. J. Cancer 104, 195–203 (2003).

    CAS  PubMed  Google Scholar 

  7. Bellacosa, A., Testa, J. R., Moore, R. & Larue, L. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol. Ther. 3, 268–275 (2004).

    CAS  PubMed  Google Scholar 

  8. Garofalo, R. S. et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J. Clin. Invest. 112, 197–208 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stiles, B. et al. Essential role of AKT-1/protein kinase Bα in PTEN-controlled tumorigenesis. Mol. Cell. Biol. 22, 3842–3851 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tschopp, O. et al. Essential role of protein kinase B γ (PKB γ/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132, 2943–2954 (2005).

    CAS  PubMed  Google Scholar 

  11. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002).

    CAS  PubMed  Google Scholar 

  12. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  13. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  14. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    CAS  PubMed  Google Scholar 

  15. Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    CAS  PubMed  Google Scholar 

  16. Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y., Corradetti, M. N., Inoki, K. & Guan, K. L. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem. Sci. 29, 32–38 (2004).

    PubMed  Google Scholar 

  18. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  19. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  PubMed  Google Scholar 

  20. Kim, D. H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).

    CAS  PubMed  Google Scholar 

  21. Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miron, M., Lasko, P. & Sonenberg, N. Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster. Mol. Cell. Biol. 23, 9117–9126 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shima, H. et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    CAS  PubMed  Google Scholar 

  25. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. 6, 1122–1128 (2004).

    CAS  PubMed  Google Scholar 

  26. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    CAS  PubMed  Google Scholar 

  27. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    CAS  PubMed  Google Scholar 

  28. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005). Identifies TOR as the kinase responsible for phosphorylating and activating PKB.

    CAS  PubMed  Google Scholar 

  29. Yeung, R. S. Multiple roles of the tuberous sclerosis complex genes. Genes Chromosomes Cancer 38, 368–375 (2003).

    CAS  PubMed  Google Scholar 

  30. Chan, S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91, 1420–1424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).

    CAS  PubMed  Google Scholar 

  32. Chan, S. et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 23, 5314–5322 (2005).

    CAS  PubMed  Google Scholar 

  33. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001). One of the first demonstrations that rapamycin, a pharmacological inhibitor of TOR, can inhibit tumour growth in Pten -deficient mice.

    CAS  PubMed  Google Scholar 

  34. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004). Shows that both tumour formation and the chemoresistance found in PKB-overexpressing tumour models depend on the 4EBP target eIF4E.

    CAS  PubMed  Google Scholar 

  35. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    CAS  Google Scholar 

  36. Kwiatkowski, D. J. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2, 471–476 (2003).

    CAS  PubMed  Google Scholar 

  37. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    CAS  PubMed  Google Scholar 

  38. Johannessen, C. M. et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl Acad. Sci. USA 102, 8573–8578 (2005).

    CAS  PubMed  Google Scholar 

  39. Cichowski, K., Santiago, S., Jardim, M., Johnson, B. W. & Jacks, T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 17, 449–454 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong, J. & Pan, D. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 18, 2479–2484 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, L. et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev. 19, 1779–1786 (2005). Identifies the ERK phosphorylation sites on TSC2, which indicates an important connection between the Ras and TOR pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Manning, B. D. et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 19, 1773–1778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).

    CAS  PubMed  Google Scholar 

  44. Simpson, L. et al. PTEN expression causes feedback upregulation of insulin receptor substrate 2. Mol. Cell. Biol. 21, 3947–3958 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Harrington, L. S. et al. The TSC1–2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gual, P., Gremeaux, T., Gonzalez, T., Le Marchand-Brustel, Y. & Tanti, J. F. MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 46, 1532–1542 (2003).

    CAS  PubMed  Google Scholar 

  47. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    CAS  PubMed  Google Scholar 

  48. Marsh, D. J. et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7, 507–515 (1998).

    CAS  PubMed  Google Scholar 

  49. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    CAS  PubMed  Google Scholar 

  50. Tsao, H., Zhang, X., Fowlkes, K. & Haluska, F. G. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 60, 1800–1804 (2000).

    CAS  PubMed  Google Scholar 

  51. Ikeda, T. et al. Anticorresponding mutations of the KRAS and PTEN genes in human endometrial cancer. Oncol. Rep. 7, 567–570 (2000).

    CAS  PubMed  Google Scholar 

  52. Liu, W., James, C. D., Frederick, L., Alderete, B. E. & Jenkins, R. B. PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res. 57, 5254–5257 (1997).

    CAS  PubMed  Google Scholar 

  53. Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).

    CAS  PubMed  Google Scholar 

  54. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Google Scholar 

  55. Mao, J. H. et al. Mutually exclusive mutations of the Pten and ras pathways in skin tumor progression. Genes Dev. 18, 1800–1805 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sattler, M. et al. Critical role for Gab2 in transformation by BCR–ABL. Cancer Cell 1, 479–492 (2002).

    CAS  PubMed  Google Scholar 

  57. Cheng, A. M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998).

    CAS  PubMed  Google Scholar 

  58. Tari, A. M. & Lopez-Berestein, G. GRB2: a pivotal protein in signal transduction. Semin. Oncol. 28, 142–147 (2001).

    CAS  PubMed  Google Scholar 

  59. Leung, R. K. & Whittaker, P. A. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107, 222–239 (2005).

    CAS  PubMed  Google Scholar 

  60. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).

    CAS  PubMed  Google Scholar 

  61. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    CAS  PubMed  Google Scholar 

  62. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  63. Singh, B. et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 16, 984–993 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    CAS  PubMed  Google Scholar 

  65. Jin, S. & Levine, A. J. The p53 functional circuit. J. Cell Sci. 114, 4139–4140 (2001).

    CAS  Google Scholar 

  66. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  67. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005). Indicates that senescence induced by Pten deletion prevents incipient tumours from progressing to a malignant state. Loss of p53 prevents this senescence, thereby allowing prostate tumours to form in Pten -null mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    CAS  PubMed  Google Scholar 

  69. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  PubMed  Google Scholar 

  70. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    CAS  PubMed  Google Scholar 

  71. You, H. et al. p53-dependent inhibition of FKHRL1 in response to DNA damage through protein kinase SGK1. Proc. Natl Acad. Sci. USA 101, 14057–14062 (2004).

    CAS  PubMed  Google Scholar 

  72. You, H. & Mak, T. W. Crosstalk between p53 and FOXO transcription factors. Cell Cycle 4, 37–38 (2005).

    CAS  PubMed  Google Scholar 

  73. David, O. et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin. Cancer Res. 10, 6865–6871 (2004).

    CAS  PubMed  Google Scholar 

  74. Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    CAS  PubMed  Google Scholar 

  75. Johnson, B. E. & Janne, P. A. Selecting patients for epidermal growth factor receptor inhibitor treatment: a FISH story or a tale of mutations? J. Clin. Oncol. 23, 6813–6816 (2005).

    CAS  PubMed  Google Scholar 

  76. Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 6829–6837 (2005).

    CAS  PubMed  Google Scholar 

  77. Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    CAS  PubMed  Google Scholar 

  78. Bell, D. W. et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 23, 8081–8092 (2005).

    CAS  PubMed  Google Scholar 

  79. Hirsch, F. R. et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol. 23, 6838–6845 (2005).

    CAS  PubMed  Google Scholar 

  80. Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M. & Gogos, J. A. Convergent evidence for impaired AKT1–GSK3β signaling in schizophrenia. Nature Genet. 36, 131–137 (2004).

    CAS  PubMed  Google Scholar 

  81. White, M. F. Insulin signaling in health and disease. Science 302, 1710–1711 (2003).

    CAS  PubMed  Google Scholar 

  82. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    CAS  PubMed  Google Scholar 

  83. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    CAS  PubMed  Google Scholar 

  84. Domchek, S. M., Auger, K. R., Chatterjee, S., Burke, T. R. Jr & Shoelson, S. E. Inhibition of SH2 domain/phosphoprotein association by a nonhydrolyzable phosphonopeptide. Biochemistry 31, 9865–9870 (1992).

    CAS  PubMed  Google Scholar 

  85. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    CAS  PubMed  Google Scholar 

  86. Ong, S. H. et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc. Natl Acad. Sci. USA 98, 6074–6079 (2001).

    CAS  PubMed  Google Scholar 

  87. Chan, T. O. et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1, 181–191 (2002).

    CAS  PubMed  Google Scholar 

  88. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  89. Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).

    CAS  PubMed  Google Scholar 

  90. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299, 256–259 (2003).

    CAS  PubMed  Google Scholar 

  91. Goldberg, M. S. et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45, 489–496 (2005).

    CAS  PubMed  Google Scholar 

  92. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    CAS  PubMed  Google Scholar 

  93. Chen, L. et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J. Biol. Chem. 280, 21418–21426 (2005).

    CAS  PubMed  Google Scholar 

  94. Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res. 60, 3605–3611 (2000).

    CAS  PubMed  Google Scholar 

  95. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001).

    CAS  PubMed  Google Scholar 

  96. You, M. J. et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA 99, 1455–1460 (2002).

    CAS  PubMed  Google Scholar 

  97. Mao, J. H. et al. Genetic interactions between Pten and p53 in radiation-induced lymphoma development. Oncogene 22, 8379–8385 (2003).

    CAS  PubMed  Google Scholar 

  98. Freeman, D. J. et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms. Cancer Cell 3, 117–130 (2003).

    CAS  PubMed  Google Scholar 

  99. Abate-Shen, C. et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 63, 3886–3890 (2003).

    CAS  Google Scholar 

  100. Xiao, A., Wu, H., Pandolfi, P. P., Louis, D. N. & Van Dyke, T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1, 157–168 (2002).

    CAS  Google Scholar 

  101. Wang, H. et al. DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. Am. J. Pathol. 160, 1481–1486 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cully, M. et al. grb2 heterozygosity rescues embryonic lethality but not tumorigenesis in pten+/− mice. Proc. Natl Acad. Sci. USA 101, 15358–15363 (2004).

    CAS  PubMed  Google Scholar 

  103. Cully, M. et al. TACC1 promotes survival, transformation and mammary tumorigenesis. Cancer Res. 65 10363–10370 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak W. Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

lung cancer

OMIM

Cowden disease

FURTHER INFORMATION

Nature signalling gateway

Science signal transduction knowledge environment

Biomolecular interaction network database

Glossary

Hamartoma

A benign growth.

Loss of heterozygosity

The loss of the remaining normal allele when one allele is already lost or mutated.

Phaeochromocytoma

Adrenal gland tumour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cully, M., You, H., Levine, A. et al. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6, 184–192 (2006). https://doi.org/10.1038/nrc1819

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing