Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using Drosophila melanogaster to map human cancer pathways

Key Points

  • The conservation of signalling pathways in Drosophila melanogaster enables modelling of most of the hallmarks of mammalian cancer, except telomere maintenance and angiogenesis.

  • Misregulation of most genes/pathways result in only 1–2 of the hallmarks of cancer, and in many cases overgrowth is restrained due to compensatory mechanisms.

  • Misregulation of genes/signalling pathways in clones of cells within a wild-type background can trigger non-cell-autonomous compensatory effects on the surrounding normal tissue, thereby maintaining tissue-size homeostasis.

  • Models of cell migration in D. melanogaster have uncovered novel potential invasion/metastasis genes.

  • Homozygous mutants of the neoplastic tumour suppressors scribble (scrib), discs large 1 (dlg1) and lethal (2) giant larvae (l(2)gl) exhibit most of the hallmarks of cancer, including the ability to invade/metastasize.

  • A new generation of screens attempt to model the development of mammalian tumours by analysing the cooperation of tumour suppressors and oncogenes in clones within an otherwise normal fly. These screens revealed that while scrib-mutant clones alone do not overgrow, strong cooperation is observed between scrib mutants and oncogenic Ras or Notch, resulting in invasive neoplastic tumours. Mutations in other cell-polarity genes also have a crucial role in restraining the pro-tumorigenic effects of oncogenic Ras.

Abstract

The development of human cancer is a multistep process, involving the cooperation of mutations in signalling, cell-cycle and cell-death pathways, as well as interactions between the tumour and the tumour microenvironment. To dissect the steps of tumorigenesis, simple animal models are needed. This article discusses the use of the genetically amenable, multicellular organism, the vinegar fly Drosophila melanogaster. In particular, recent studies have highlighted the power of D. melanogaster for examining cooperative interactions between tumour suppressors and oncogenes and for generating in vivo models of tumour development and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hallmarks of cancer in Drosophila melanogaster imaginal discs.
Figure 2: Regulation of epithelial polarity.
Figure 3: Pathways mediating cooperation between scribble mutants and RasACT or NotchACT.
Figure 4: Pathways mediating cooperation with RasACT to form metastatic tumours.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hahn, W. C. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell. Biol. 22, 2111–2123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  5. Balmain, A. & Akhurst, R. J. Cancer: dangerous liaisons. Nature 428, 271–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nature Rev. Genet. 6, 9–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Gateff, E. Tumour suppressor and overgrowth suppressor genes of Drosophila melanogaster: developmental aspects. Int. J. Dev. Biol. 38, 565–590 (1994).

    CAS  PubMed  Google Scholar 

  9. St John, M. A. & Xu, T. Understanding human cancer in a fly? Am. J. Hum. Genet. 61, 1006–1010 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fortini, M. E., Skupski, M. P., Boguski, M. S. & Hariharan, I. K. A survey of human disease gene counterparts in the Drosophila genome. J. Cell Biol. 150, F23–F30 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Rabinow, L. The proliferation of Drosophila in cancer research: a system for the functional characterization of tumour suppressors and oncogenes. Cancer Invest. 20, 531–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Potter, C. J., Turenchalk, G. S. & Xu, T. Drosophila in cancer research. An expanding role. Trends Genet. 16, 33–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Brumby, A. et al. A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation, identifies novel regulators of S phase entry in Drosophila. Genetics 168, 227–251 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Staehling-Hampton, K., Ciampa, P. J., Brook, A. & Dyson, N. A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics 153, 275–287 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lane, M. E. et al. A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2. Genetics 155, 233–244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tseng, A. S. & Hariharan, I. K. An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. Genetics 162, 229–243 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiao, R. et al. Headless flies generated by developmental pathway interference. Development 128, 3307–3319 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumour suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila tuberous sclerosis complex gene homologues restrict cell growth and cell proliferation. Cell 105, 345–355 (2001). References 18–20 highlight the use of clonal analysis screens in D. melanogaster to reveal novel tumour suppressors.

    Article  CAS  PubMed  Google Scholar 

  21. Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003). This study and reference 107 use clonal analysis to analyse tumour development within the context of wild-type tissue, showing for the first time the importance of activated Ras and Notch oncogenes in tumour development in D. melanogaster and that cell-polarity regulators are highly important in restraining the oncogenic potential of these oncogenes. These studies have revealed a D. melanogaster two-hit model of tumorigenesis and have developed a system that mimics the development of tumours in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Firth, L. C. & Baker, N. E. Extracellular signals responsible for spatially regulated proliferation in the differentiating Drosophila eye. Dev. Cell 8, 541–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Baonza, A. & Freeman, M. Control of cell proliferation in the Drosophila eye by Notch signalling. Dev. Cell 8, 529–539 (2005). References 22 and 23 are elegant studies revealing the role of Notch signalling in driving cell proliferation and the involvement of DPP, HH and epidermal growth factor receptor signalling pathways in coordinating differentiation in the D. melanogaster eye disc. Reference 22 further shows that cells mutant for both Rbf1 and Dacapo ectopically proliferate while still expressing differentiation markers.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J. D. & Treisman, J. E. The role of Wingless signalling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128, 1519–1529 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Lei, L., Irvine, K. D. & Baker, N. E. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development 130, 2829–2840 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Rosin, D., Schejter, E., Volk, T. & Shilo, B. Z. Apical accumulation of the Drosophila PDGF/VEGF receptor ligands provides a mechanism for triggering localized actin polymerization. Development 131, 1939–1948 (2004). Examines the effect of PVR on wing imaginal disc overgrowth, showing that activated PVR has characteristics of a neoplastic oncogene.

    Article  CAS  PubMed  Google Scholar 

  27. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, D. & McKearin, D. Dpp signalling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13, 1786–1791 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Zettervall, C. J. et al. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl Acad. Sci. USA 101, 14192–14197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chanut, F. & Heberlein, U. Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124, 559–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumour suppressors. Science 289, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kurzik-Dumke, U., Phannavong, B., Gundacker, D. & Gateff, E. Genetic, cytogenetic and developmental analysis of the Drosophila melanogaster tumour suppressor gene lethal(2)tumorous imaginal discs (1(2)tid). Differentiation 51, 91–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Arama, E., Dickman, D., Kimchie, Z., Shearn, A. & Lev, Z. Mutations in the β-propeller domain of the Drosophila brain tumour (brat) protein induce neoplasm in the larval brain. Oncogene 19, 3706–3716 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Gateff, E., Loffler, T. & Wismar, J. A temperature-sensitive brain tumour suppressor mutation of Drosophila melanogaster: developmental studies and molecular localization of the gene. Mech. Dev. 41, 15–31 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Du, W., Vidal, M., Xie, J. E. & Dyson, N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev. 10, 1206–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologues of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Sogame, N., Kim, M. & Abrams, J. M. Drosophila p53 preserves genomic stability by regulating cell death. Proc. Natl Acad. Sci. USA 100, 4696–4701 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quinn, L. et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22, 3568–3579 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Li, Q. J., Pazdera, T. M. & Minden, J. S. Drosophila embryonic pattern repair: how embryos respond to cyclin E-induced ectopic division. Development 126, 2299–2307 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Richardson, H., O'Keefe, L. V., Marty, T. & Saint, R. Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121, 3371–3379 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Duronio, R. J., Brook, A., Dyson, N. & O'Farrell, P. H. E2F-induced S phase requires cyclin E. Genes Dev. 10, 2505–2513 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Xin, S., Weng, L., Xu, J. & Du, W. The role of RBF in developmentally regulated cell proliferation in the eye disc and in Cyclin D/Cdk4 induced cellular growth. Development 129, 1345–1356 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. de Nooij, J. C., Letendre, M. A. & Hariharan, I. K. A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237–1247 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Lane, M. E. et al. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87, 1225–1235 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Duman-Scheel, M., Weng, L., Xin, S. & Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417, 299–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Heberlein, U., Singh, C. M., Luk, A. Y. & Donohoe, T. J. Growth and differentiation in the Drosophila eye coordinated by hedgehog. Nature 373, 709–711 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Bateman, J. M. & McNeill, H. Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119, 87–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F. & Edgar, B. A. The Drosophila cyclin D–Cdk4 complex promotes cellular growth. EMBO J. 19, 4543–4554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Prober, D. A. & Edgar, B. A. Interactions between Ras1, dMyc, and dPI3K signalling in the developing Drosophila wing. Genes Dev. 16, 2286–2299 (2002). An elegant study of Ras, Myc and PI3K expression in clones in the wing imaginal disc, showing the effect on cell growth and rates of cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karim, F. D. & Rubin, G. M. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125, 1–9 (1998). Examines the effect of expression of activated Ras in the eye disc, showing that it results in hyperplasia as well as non-cell-autonomous cell death.

    Article  CAS  PubMed  Google Scholar 

  57. Asha, H. et al. Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163, 203–215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002). Provides evidence of a role for DPP in cell survival and for the phenomena of cell competition.

    Article  CAS  PubMed  Google Scholar 

  59. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signalling. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Martin-Castellanos, C. & Edgar, B. A. A characterization of the effects of Dpp signalling on cell growth and proliferation in the Drosophila wing. Development 129, 1003–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Hay, B. A. & Guo, M. Coupling cell growth, proliferation, and death. Hippo weighs in. Dev. Cell 5, 361–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Moberg, K. H., Mukherjee, A., Veraksa, A., Artavanis-Tsakonas, S. & Hariharan, I. K. The Drosophila F box protein archipelago regulates dMyc protein levels in vivo. Curr. Biol. 14, 965–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Cordero, J., Jassim, O., Bao, S. & Cagan, R. A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mech. Dev. 121, 1523–1530 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Reed, B. H., Wilk, R., Schock, F. & Lipshitz, H. D. Integrin-dependent apposition of Drosophila extraembryonic membranes promotes morphogenesis and prevents anoikis. Curr. Biol. 14, 372–380 (2004). Provides the first evidence for the phenomena of anoikis in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  66. Adachi-Yamada, T. & O'Connor, M. B. Mechanisms for removal of developmentally abnormal cells: cell competition and morphogenetic apoptosis. J. Biochem. (Tokyo) 136, 13–17 (2004).

    Article  CAS  Google Scholar 

  67. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004). References 67 and 68 show that clonal expression of Myc results in non-cell-autonomous effects on surrounding normal cells promoting their death, showing that Myc is a central mediator of cell competition, which might be related to the function of this protein in human cancer.

    Article  CAS  PubMed  Google Scholar 

  69. Giraldez, A. J. & Cohen, S. M. Wingless and Notch signalling provide cell survival cues and control cell proliferation during wing development. Development 130, 6533–6543 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Chao, J. L., Tsai, Y. C., Chiu, S. J. & Sun, Y. H. Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 131, 3839–3847 (2004). Shows that there are positive non-cell-autonomous effects mediated by clonal expression of Notch in the eye disc.

    Article  CAS  PubMed  Google Scholar 

  71. Tsai, Y. C. & Sun, Y. H. Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 39, 141–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J. D., Amanai, K., Shearn, A. & Treisman, J. E. The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development 129, 5697–5706 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Huh, J. R., Guo, M. & Hay, B. A. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol. 14, 1262–1266 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signalling pathways. Dev. Cell 7, 491–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Perez-Garijo, A., Martin, F. A. & Morata, G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131, 5591–5598 (2004). References 73–75 provide evidence that dying cells secrete a factor to promote the proliferation of surrounding cells and maintain tissue homeostasis.

    Article  CAS  PubMed  Google Scholar 

  76. Sahai, E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev. 15, 87–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kunwar, P. S., Starz-Gaiano, M., Bainton, R. J., Heberlein, U. & Lehmann, R. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol. 1, E80 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Knaut, H., Werz, C., Geisler, R. & Nusslein-Volhard, C. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421, 279–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Molyneaux, K. A. et al. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130, 4279–4286 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Yoshida, H. et al. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc. Natl Acad. Sci. USA 101, 8144–8149 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behaviour by taiman, a Drosophila protein related to AIB1, a steroid receptor co-activator amplified in breast cancer. Cell 103, 1047–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Anzick, S. L. et al. AIB1, a steroid receptor co-activator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Silver, D. L. & Montell, D. J. Paracrine signalling through the JAK/STAT pathway activates invasive behaviour of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell 3, 765–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  88. Wang, F., Dumstrei, K., Haag, T. & Hartenstein, V. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev. Biol. 270, 350–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Dumstrei, K., Wang, F. & Hartenstein, V. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J. Neurosci. 23, 3325–3335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003). Shows that D. melanogaster MOE, the only ERM homologue, has an important role in epithelial integrity and invasion by inhibiting the Rho GTPase, which has implications for the epithelial to mesenchymal transition.

    Article  CAS  PubMed  Google Scholar 

  92. Hipfner, D. R. & Cohen, S. M. The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development. PLoS Biol. 1, E35 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Hipfner, D. R., Keller, N. & Cohen, S. M. Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev. 18, 2243–2248 (2004). Shows that the D. melanogaster Sterile-20 kinase SLIK has a role in positively regulating MOE to maintain epithelial integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signalling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smallhorn, M., Murray, M. J. & Saint, R. The epithelial–mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble. Development 131, 2641–2651 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Schumacher, S., Gryzik, T., Tannebaum, S. & Muller, H. A. The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless. Development 131, 2631–2640 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Jaffe, A. B. & Hall, A. Rho GTPases in transformation and metastasis. Adv. Cancer Res. 84, 57–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. The neurofibromatosis-2 homologue, Merlin, and the tumour suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127, 1315–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 17, 1090–1100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chihara, T., Kato, K., Taniguchi, M., Ng, J. & Hayashi, S. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130, 1419–1428 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Agrawal, N., Kango, M., Mishra, A. & Sinha, P. Neoplastic transformation and aberrant cell–cell interactions in genetic mosaics of lethal(2)giant larvae (lgl), a tumour suppressor gene of Drosophila. Dev. Biol. 172, 218–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Goode, S. & Perrimon, N. Inhibition of patterned cell shape change and cell invasion by Discs large during Drosophila oogenesis. Genes Dev. 11, 2532–2544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Woodhouse, E., Hersperger, E. & Shearn, A. Growth, metastasis, and invasiveness of Drosophila tumours caused by mutations in specific tumour suppressor genes. Dev. Genes Evol. 207, 542–550 (1998). A seminal study of three D. melanogaster tumour-suppressor mutants using transplantation assays to measure invasion/metastasis.

    Article  CAS  PubMed  Google Scholar 

  106. Woodhouse, E., Hersperger, E., Stetler-Stevenson, W. G., Liotta, L. A. & Shearn, A. Increased type IV collagenase in lgl-induced invasive tumours of Drosophila. Cell Growth Differ. 5, 151–159 (1994).

    CAS  PubMed  Google Scholar 

  107. Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behaviour. Science 302, 1227–1231 (2003). This study and reference 21 have developed a D. melanogaster two-hit model of tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  108. Gateff, E. The genetics and epigenetics of neoplasms in Drosophila. Biol. Rev. Camb. Philos. Soc. 53, 123–168 (1978).

    Article  CAS  PubMed  Google Scholar 

  109. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Hough, C. D., Woods, D. F., Park, S. & Bryant, P. J. Organizing a functional junctional complex requires specific domains of the Drosophila MAGUK Discs large. Genes Dev. 11, 3242–3253 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zeitler, J., Hsu, C. P., Dionne, H. & Bilder, D. Domains controlling cell polarity and proliferation in the Drosophila tumour suppressor Scribble. J. Cell Biol. 167, 1137–1146 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Tinkle, C. L., Lechler, T., Pasolli, H. A. & Fuchs, E. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc. Natl Acad. Sci. USA 101, 552–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arquier, N., Perrin, L., Manfruelli, P. & Semeriva, M. The Drosophila tumour suppressor gene lethal(2)giant larvae is required for the emission of the Decapentaplegic signal. Development 128, 2209–2220 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Canamasas, I., Debes, A., Natali, P. G. & Kurzik-Dumke, U. Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DnaJ-like tumour suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J. Biol. Chem. 278, 30952–30960 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Cho, N. K. et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108, 865–876 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422, 322–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Woodhouse, E. C. et al. Drosophila screening model for metastasis: Semaphorin 5c is required for l(2)gl cancer phenotype. Proc. Natl Acad. Sci. USA 100, 11463–11468 (2003). Uses the transplantation assay to screen for genes that modify the ability of l(2)gl -mutant brain tumours to invade/metastasize to distant sites in a wild-type host. This screen has revealed novel genes involved in the promoting or inhibiting metastasis in D. melanogaster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xia, Y. & Karin, M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol. 14, 94–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Abdelilah-Seyfried, S., Cox, D. N. & Jan, Y. N. Bazooka is a permissive factor for the invasive behaviour of discs large tumour cells in Drosophila ovarian follicular epithelia. Development 130, 1927–1935 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Malliri, A. & Collard, J. G. Role of Rho-family proteins in cell adhesion and cancer. Curr. Opin. Cell Biol. 15, 583–589 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Blair, S. S. Genetic mosaic techniques for studying Drosophila development. Development 130, 5065–5072 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Read, R. D., Bach, E. A. & Cagan, R. L. Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol. Cell. Biol. 24, 6676–6689 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pedraza, L. G., Stewart, R. A., Li, D. M. & Xu, T. Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23, 4754–4762 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Baker, N. E. Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12, 499–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Santos, A. C. & Lehmann, R. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578–R589 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ip, Y. T. & Gridley, T. Cell movements during gastrulation: snail dependent and independent pathways. Curr. Opin. Genet. Dev. 12, 423–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumour metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).

    Article  CAS  Google Scholar 

  135. Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Rev. Cancer 5, 355–366 (2005).

    Article  CAS  Google Scholar 

  136. Nabeshima, K., Inoue, T., Shimao, Y., Kataoka, H. & Koono, M. Cohort migration of carcinoma cells: differentiated colourectal carcinoma cells move as coherent cell clusters or sheets. Histol. Histopathol. 14, 1183–1197 (1999).

    CAS  PubMed  Google Scholar 

  137. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Akhurst, R. J. & Derynck, R. TGF-β signalling in cancer — a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001).

    CAS  PubMed  Google Scholar 

  139. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Ribeiro, C., Neumann, M. & Affolter, M. Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr. Biol. 14, 2197–2207 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Henrique, D. & Schweisguth, F. Cell polarity: the ups and downs of the Par6/aPKC complex. Curr. Opin. Genet. Dev. 13, 341–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Sotillos, S., Diaz-Meco, M. T., Caminero, E., Moscat, J. & Campuzano, S. DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J. Cell Biol. 160, 549–547 (2004).

    Article  Google Scholar 

  144. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Strand, D. et al. A human homologue of the Drosophila tumour suppressor gene l(2)gl maps to 17p11. 2–12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain. Oncogene 11, 291–301 (1995).

    CAS  PubMed  Google Scholar 

  147. Musch, A. et al. Mammalian homologue of Drosophila tumour suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Elbert, M., Rossi, G. & Brennwald, P. The yeast par-1 homologues kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol. Biol. Cell 16, 532–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zarnescu, D. C. et al. Fragile X protein functions with lgl and the par complex in flies and mice. Dev. Cell 8, 43–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Audebert, S. et al. Mammalian Scribble forms a tight complex with the βPIX exchange factor. Curr. Biol. 14, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Roh, M. H. & Margolis, B. Composition and function of PDZ protein complexes during cell polarization. Am. J. Physiol. Renal Physiol. 285, F377–F387 (2003).

    Article  PubMed  Google Scholar 

  152. Fitzgerald, K., Harrington, A. & Leder, P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 19, 4191–4198 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Humbert and L. Quinn for comments on this review and Laura Johnston for helpful discussions. A.M.B. is supported by a National Institutes of Health grant and a National Health and Medical Research Council (NHMRC) grant, and H.E.R. by an NHMRC Senior Fellowship. We apologise for all studies we could not cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony M. Brumby or Helena E. Richardson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Flybase

aPKC

Archipelago

bam

baz

brat

Buffy

Cdc42

Dacapo

Diap1

dlg1

DPP

hyd

jaguar

l(2)gl

l(2)tid

l(3)mbt

MER

Moe

Myoblast city

Notch

otu

Patched

PATJ

PNT

Pvr

Rac1

scrib

sdt

SEMA-5C

sho

slik

Taiman

TRE1

warts

WG

FURTHER INFORMATION

Berkeley Drosophila Genome Project

Fly Genes in Cancer Research

Homophila

FlyGRID

Glossary

EXTRACELLULAR MATRIX

An organized array of extracellular proteins, such as laminin and fibronectin, that acts as anchors and receptors for the basally localized transmembrane proteins, the integrins.

ECTOPIC DIFFERENTIATION

Cells that differentiate in environments where differentiation would not normally occur under physiological conditions.

IMAGINAL DISC

A single-cell layer epithelial tissue in the larvae that gives rise to adult structures such as the eyes, wings and legs.

ECTOPIC PROLIFERATION

Proliferation of cells in environments that do not normally support their proliferation, or in tissue compartments where cells are normally fully differentiated and non-proliferative.

UBIQUITIN LIGASE

A protein complex that transfers ubiquitin (a 76 residue protein) from an E2 ubiquitin-conjugating enzyme to the substrate, thereby tagging it for ubiquitin-mediated degradation.

ANOIKIS

Cell death that ensues following loss of contact between the cell and the extracellular matrix

EPITHELIAL–MESENCHYMAL TRANSITION

The transition from a highly polarized epithelial cell to a migratory mesenchymal cell that occurs in development and in cancer progression.

CELL POLARITY

The structure, or shape, of a cell that is determined by the specific location of membrane-localized protein complexes along the apical–basal axis.

CONTACT INHIBITION

The arrest of the cell cycle in G1 phase, which occurs when cell density increases to confluence in culture, mediated by cell–cell contact through cadherins at the adherens junction.

ADHERENS JUNCTIONS

Cell–cell junctions composed of cadherins and catenins. Cadherins are transmembrane proteins that form contacts with each other extracellularly, and intracellularly anchor to the actin cytoskeleton through catenins.

ZONULA ADHERENS

Forms from coalescence of the adherens junctions, and creates a barrier that separates the cell into apical and basolateral membrane domains.

SEPTATE JUNCTIONS

Drosophila melanogaster cell–cell junctions, where Scribbled and Discs large 1 are located, located basal to the adherens junctions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumby, A., Richardson, H. Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5, 626–639 (2005). https://doi.org/10.1038/nrc1671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing