Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breast cancer metastasis: markers and models

Key Points

  • Current prognostic criteria only poorly predict the metastasis risk for an individual breast cancer patient. Therefore, many women receive cytotoxic chemotherapy unnecessarily.

  • Gene-expression signatures of human primary breast tumours predict more accurately than current prognostic criteria which patients are destined to relapse and ultimately die of metastatic breast cancer, and should therefore receive adjuvant therapy.

  • New molecular insights challenge the traditional model of metastasis, and indicate that the metastatic capacity of breast tumours is an inherent feature, and not necessarily a late, acquired phenotype.

  • Local breast cancer might have a 'non-metastatic, good-prognosis' stem cell of origin; metastasizing systemic breast cancer might have a 'metastatic, poor-prognosis' stem cell of origin.

Abstract

Breast cancer starts as a local disease, but it can metastasize to the lymph nodes and distant organs. At primary diagnosis, prognostic markers are used to assess whether the transition to systemic disease is likely to have occurred. The prevailing model of metastasis reflects this view — it suggests that metastatic capacity is a late, acquired event in tumorigenesis. Others have proposed the idea that breast cancer is intrinsically a systemic disease. New molecular technologies, such as DNA microarrays, support the idea that metastatic capacity might be an inherent feature of breast tumours. These data have important implications for prognosis predicition and our understanding of metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Most common metastasis sites of breast cancer at autopsy.
Figure 2: Models of the metastatic process.
Figure 3: New models of the metastatic process in breast cancer.
Figure 4: An integrative model of breast cancer metastasis.

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005). Gives an overview of the results of 194 randomized trials of adjuvant chemotherapy or hormonal therapy among women with early breast cancer.

  2. Eifel, P. et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. Natl Cancer Inst. 93, 979–989 (2001). Provides an assessment of available data between January 1995 and July 2000 regarding the use of adjuvant therapy for breast cancer.

    Article  CAS  PubMed  Google Scholar 

  3. Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumour. Science 197, 893–895 (1977). The experimental data establish the longstanding model of metastasis, which indicates that metastatic cells are rare and arise late during tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  4. Milas, L., Peters, L. J. & Ito, H. Spontaneous metastasis: random or selective? Clin. Exp. Metastasis 1, 309–315 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Giavazzi, R., Alessandri, G., Spreafico, F., Garattini, S. & Mantovani, A. Metastasizing capacity of tumour cells from spontaneous metastases of transplanted murine tumours. Br. J. Cancer 42, 462–472 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mantovani, A., Giavazzi, R., Alessandri, G., Spreafico, F. & Garattini, S. Characterization of tumour lines derived from spontaneous metastases of a transplanted murine sarcoma. Eur. J. Cancer 17, 71–76 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002). Shows that a 70-gene expression profile of primary breast tumours can predict the later appearance or absence of distant metastases.

    Article  CAS  Google Scholar 

  8. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumours. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hellman, S. & Harris, J. R. in Diseases of the Breast (eds Harris, J. R., Lippman, M. E., Morrow, M. & Osborne, C. K.), 407–423 (Lippincott Williams & Wilkins, Philadelphia, 2000). Describes the clinical behaviour of untreated breast cancer, including the incidences of regional lymph-node and distant metastasis.

    Google Scholar 

  12. Tavassoli, F. A. & Devilee, P. (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. (IARC press, Lyon, 2003).

    Google Scholar 

  13. Lee, Y. T. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol. 23, 175–180 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Page, D. L. Prognosis and breast cancer. Recognition of lethal and favourable prognostic types. Am. J. Surg. Pathol. 15, 334–349 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Koscielny, S. et al. Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination. Br. J. Cancer 49, 709–715 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosen, P. P., Groshen, S., Saigo, P. E., Kinne, D. W. & Hellman, S. Pathological prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: a study of 644 patients with median follow-up of 18 years. J. Clin. Oncol. 7, 1239–1251 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Carter, C. L., Allen, C. & Henson, D. E. Relation of tumour size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63, 181–187 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Pinder, S. E. et al. Pathological prognostic factors in breast cancer. III. Vascular invasion: relationship with recurrence and survival in a large study with long-term follow-up. Histopathology 24, 41–47 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. de Mascarel, I. et al. Obvious peritumoural emboli: an elusive prognostic factor reappraised. Multivariate analysis of 1320 node-negative breast cancers. Eur. J. Cancer 34, 58–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hellman, S. Karnofsky Memorial Lecture. Natural history of small breast cancers. J. Clin. Oncol. 12, 2229–2234 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. James, J. J. et al. Bone metastases from breast carcinoma: histopathological–radiological correlations and prognostic features. Br. J. Cancer 89, 660–665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borst, M. J. & Ingold, J. A. Metastatic patterns of invasive lobular versus invasive ductal carcinoma of the breast. Surgery 114, 637–641 (1993).

    CAS  PubMed  Google Scholar 

  24. Arpino, G., Bardou, V. J., Clark, G. M. & Elledge, R. M. Infiltrating lobular carcinoma of the breast: tumour characteristics and clinical outcome. Breast Cancer Res. 6, R149–R156 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. McGuire, W. L. & Clark, G. M. Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N. Engl. J. Med. 326, 1756–1761 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Hayes, D. F. et al. Tumour marker utility grading system: a framework to evaluate clinical utility of tumour markers. J. Natl Cancer Inst. 88, 1456–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ransohoff, D. F. Bias as a threat to the validity of cancer molecular-marker research. Nature Rev. Cancer 5, 142–149 (2005).

    Article  CAS  Google Scholar 

  28. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Ross, J. S. et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8, 307–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Yamauchi, H., Stearns, V. & Hayes, D. F. When is a tumour marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J. Clin. Oncol. 19, 2334–2356 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ross, J. S. et al. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol. Cell Proteomics 3, 379–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Dvorak, H. F. Tumours: wounds that do not heal. Similarities between tumour stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Ring, A., Smith, I. E. & Dowsett, M. Circulating tumour cells in breast cancer. Lancet Oncol. 5, 79–88 (2004).

    Article  PubMed  Google Scholar 

  35. Stathopoulou, A. et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol. 20, 3404–3412 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Zach, O., Kasparu, H., Wagner, H., Krieger, O. & Lutz, D. Prognostic value of tumour cell detection in peripheral blood of breast cancer patients. Acta Med. Austriaca 59, 32–34 (2002).

    CAS  Google Scholar 

  37. Pierga, J. Y. et al. Clinical significance of immunocytochemical detection of tumour cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin. Cancer Res. 10, 1392–1400 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Diel, I. J. et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J. Natl Cancer Inst. 88, 1652–1658 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Landys, K., Persson, S., Kovarik, J., Hultborn, R. & Holmberg, E. Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res. Treat. 49, 27–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Braun, S. et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med. 342, 525–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wiedswang, G. et al. Detection of isolated tumour cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol. 21, 3469–3478 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Molino, A. et al. Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis. Breast Cancer Res. Treat. 42, 23–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Ismail, M. S. et al. Detection of micrometastatic disease and monitoring of perioperative tumour cell dissemination in primary operable breast cancer patients using real-time quantitative reverse transcription-PCR. Clin. Cancer Res. 10, 196–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gebauer, G., Fehm, T., Merkle, E., Jaeger, W. & Mitze, M. Micrometastases in axillary lymph nodes and bone marrow of lymph node-negative breast cancer patients — prognostic relevance after 10 years. Anticancer Res. 23, 4319–4324 (2003).

    PubMed  Google Scholar 

  45. Funke, I. & Schraut, W. Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J. Clin. Oncol. 16, 557–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumour embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J. Natl Cancer Inst. 45, 773–782 (1970).

    CAS  PubMed  Google Scholar 

  47. Gangnus, R., Langer, S., Breit, E., Pantel, K. & Speicher, M. R. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin. Cancer Res. 10, 3457–3464 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003). Describes the prospective isolation of candidate breast tumour stem cells and their ability to form tumours in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gudjonsson, T. et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16, 693–706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clarke, R. B. et al. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol. 277, 443–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Andreasen, P. A., Kjoller, L., Christensen, L. & Duffy, M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Umeda, T., Eguchi, Y., Okino, K., Kodama, M. & Hattori, T. Cellular localization of urokinase-type plasminogen activator, its inhibitors, and their mRNAs in breast cancer tissues. J. Pathol. 183, 388–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Janicke, F., Schmitt, M. & Graeff, H. Clinical relevance of the urokinase-type and tissue-type plasminogen activators and of their type 1 inhibitor in breast cancer. Semin. Thromb. Hemost. 17, 303–312 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Bajou, K. et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoural angiogenesis and growth. Oncogene 23, 6986–6990 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Foekens, J. A. et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res. 60, 636–643 (2000).

    CAS  PubMed  Google Scholar 

  56. Konecny, G. et al. Her-2/neu and urokinase-type plasminogen activator and its inhibitor in breast cancer. Clin. Cancer Res. 7, 2448–2457 (2001).

    CAS  PubMed  Google Scholar 

  57. Janicke, F. et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J. Natl Cancer Inst. 93, 913–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Harbeck, N., Kates, R. E. & Schmitt, M. Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J. Clin. Oncol. 20, 1000–1007 (2002).

    Article  PubMed  Google Scholar 

  59. Look, M. P. et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl Cancer Inst. 94, 116–128 (2002). Confirms the prognostic value of uPA and PAI1 in primary breast cancer in a re-analysis of independent patient data provided by the members of the EORTC Receptor and Biomarker Group.

    Article  CAS  PubMed  Google Scholar 

  60. Harbeck, N. et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res. 62, 4617–4622 (2002).

    CAS  PubMed  Google Scholar 

  61. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000). Classifies primary breast tumours into 5 subtypes on the basis of similarities in their gene-expression patterns.

    Article  CAS  PubMed  Google Scholar 

  62. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumour subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sorlie, T. et al. Repeated observation of breast tumour subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  65. Goldhirsch, A., Glick, J. H., Gelber, R. D., Coates, A. S. & Senn, H. J. Meeting highlights: international consensus panel on the treatment of primary breast cancer. Seventh international conference on adjuvant therapy of primary breast cancer. J. Clin. Oncol. 19, 3817–3827 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Tuma, R. S. A big trial for a new technology: TransBIG project takes microarrays into clinical trials. J. Natl Cancer Inst. 96, 648–689 (2004).

    Article  PubMed  Google Scholar 

  67. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Tan, P. K. et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31, 5676–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, E. et al. Gene expression predictors of breast cancer outcomes. Lancet 361, 1590–1596 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Esteva, F. J. et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin. Cancer Res. 11, 3315–3319 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumours. J. Clin. Invest. 115, 44–55 (2005). Shows that organ-specific metastasis of a breast cancer cell line is determined by the poor-prognosis signature and an additional metastasis-specific gene set.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumours and wounds. PLoS Biol. 2, E7 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ein-Dor, L., Kela, I., Getz, G., Givol, D. & Domany, E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Fidler, I. J. Selection of successive tumour lines for metastasis. Nature New Biol. 242, 148–149 (1973).

    Article  CAS  PubMed  Google Scholar 

  79. Leighton, J. Inherent malignancy of cancer cells possibly limited by genetically differing cells in the same tumour. Acta Cytol. 9, 138–140 (1965).

    Google Scholar 

  80. Stackpole, C. W. Distinct lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature 289, 798–800 (1981).

    Article  CAS  PubMed  Google Scholar 

  81. Vaage, J. Metastasizing potentials of mouse mammary tumours and their metastases. Int. J. Cancer 41, 855–858 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Eccles, S. A., Heckford, S. E. & Alexander, P. Effect of cyclosporin A on the growth and spontaneous metastasis of syngeneic animal tumours. Br. J. Cancer 42, 252–259 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weiss, L., Holmes, J. C. & Ward, P. M. Do metastases arise from pre-existing subpopulations of cancer cells? Br. J. Cancer 47, 81–89 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hill, R. P., Chambers, A. F., Ling, V. & Harris, J. F. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224, 998–1001 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Ling, V., Chambers, A. F., Harris, J. F. & Hill, R. P. Quantitative genetic analysis of tumour progression. Cancer Metastasis Rev. 4, 173–192 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. Kerbel, R. S., Waghorne, C., Man, M. S., Elliott, B. & Breitman, M. L. Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate-mediated DNA transfection. Proc. Natl Acad. Sci. USA 84, 1263–1267 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kerbel, R. S., Waghorne, C., Korczak, B., Lagarde, A. & Breitman, M. L. Clonal dominance of primary tumours by metastatic cells: genetic analysis and biological implications. Cancer Surv. 7, 597–629 (1988).

    CAS  PubMed  Google Scholar 

  88. Garcia-Olmo, D., Garcia-Olmo, D. C., Ontanon, J., Martinez, E. & Vallejo, M. Tumour DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histol. Histopathol. 14, 1159–1164 (1999).

    CAS  PubMed  Google Scholar 

  89. Garcia-Olmo, D. & Garcia-Olmo, D. C. Functionality of circulating DNA: the hypothesis of genometastasis. Ann. NY Acad. Sci. 945, 265–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Lancaster, M., Rouse, J. & Hunter, K. W. Modifiers of mammary tumour progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm. Genome 16, 120–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  92. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weigelt, B. et al. Gene expression profiles of primary breast tumours maintained in distant metastases. Proc. Natl Acad. Sci. USA 100, 15901–15905 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc. Natl Acad. Sci. USA 100, 5974–5979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer; are tumour stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dontu, G., El-Ashry, D. & Wicha, M. S. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol. Metab. 15, 193–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362, 362–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ayers, M. et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol. 22, 2284–2293 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Quackenbush, J. Computational analysis of microarray data. Nature Rev. Genet. 2, 418–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumour stem cells Oncogene 23, 7274–7282 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Van't Veer, L. J., Weigelt, B. Road map to metastasis. Nature Med. 9, 999–1000 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work we could not cite directly due to space constraints. We would like to thank A. Berns, R. Bernards, R. Kortlever and S. Rodenhuis for advice and critical reading of the manuscript. B.W. and L.J.v.V. are supported by the Dutch Cancer Society, the Netherlands Genomics Initiative and the EU 6th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. van't Veer.

Ethics declarations

Competing interests

Laura J. van't Veer is a founder of Agendia B.V., Amsterdam.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

cytokeratin-5

cytokeratin-8

cytokeratin-17

cytokeratin-18

cytokeratin-19

ERBB2

MMP1

MMP9

PAI1

PAI2

uPA

uPAR

National Cancer Institute

breast cancer

FURTHER INFORMATION

Adjuvant Online

Breast International Group

EORTC

Netherlands Cancer Institute

WHO Classification of Tumours

Glossary

ADJUVANT THERAPY

Cytotoxic chemotherapy and/or endocrine therapy after surgical removal and/or radiotherapy of the primary tumour. Adjuvant therapy is used to ensure that all microscopic disseminated cancer cells are destroyed.

PROGNOSTIC MARKER

A characteristic of a patient or tumour at the time of diagnosis that can be used to estimate the chance of the disease recurring in the absence of therapy.

MULTIVARIATE ANALYSIS

A statistical test that examines more than two variables at the same time.

PROSPECTIVE STUDY

A study in which a selected group of patients is followed over time to determine differences in the rate at which disease develops in relation to the investigated factor. These factors might include drugs, procedures or diets.

PREDICTIVE MARKER

A characteristic of a patient that is associated with the response or lack of response to a particular therapy.

MICROMETASTASIS

Micrometastases were originally defined as small occult metastases of less than 0.2 cm in diameter. Nowadays, the term also includes disseminated tumour cells that are present in peripheral blood, bone marrow or lymph nodes.

ENZYME-LINKED IMMUNOSORBENT ASSAY

(ELISA). A sensitive test to quantitatively determine small amounts of a particular protein in a solution. In an ELISA the interaction between the protein of interest and a specific antibody is detected by an enzyme that is linked to the antibody and converts a colourless substrate to a coloured product.

RETROSPECTIVE STUDY

A study in which data are collected and analysed after all measurements, interventions or events in the participants have taken place.

METAGENE

Metagenes are linear combinations of individual gene-expression values. They have the potential to classify and predict cellular phenotypes resulting from deregulation of oncogenic pathways.

EXPERIMENTAL METASTASIS ASSAY

Assays in which cultured tumour cells or minced tumours are introduced into blood vessels or organs of mice and examined for their in vivo growth and tumour formation.

LURIA–DELBRUCK FLUCTUATION ANALYSIS

A method to estimate mutation rates in cell populations, originally designed for bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigelt, B., Peterse, J. & van't Veer, L. Breast cancer metastasis: markers and models. Nat Rev Cancer 5, 591–602 (2005). https://doi.org/10.1038/nrc1670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing