Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacokinetic variability of anticancer agents

Key Points

  • The field of pharmacokinetics attempts to describe the bodily disposition of drugs in terms of numerical parameters that are calculated from plasma concentrations obtained at time points after drug administration. These parameters can be correlated with treatment outcomes such as toxicity and efficacy.

  • Anticancer drugs can have considerable interindividual pharmacokinetic variability, which, given the narrow therapeutic index of these drugs, results in unpredictable clinical effects.

  • There are many potential sources of pharmacokinetic variation, including interindividual differences in absorption, distribution, metabolism and excretion of anticancer drugs.

  • A considerable amount of research is currently directed towards defining genetic polymorphisms in drug-disposition pathways that explain observed interindividual pharmacokinetic variability.

  • Tailoring doses of anticancer drug to the individual patient will decrease interpatient pharmacokinetic variability and reduce the risks of severe toxicity and subtherapeutic treatment.

  • Individualized dosing strategies currently being examined in the research setting are promising, although few are used in routine clinical practice.

Abstract

The translation of advances in cancer biology to drug discovery can be complicated by pharmacokinetic variation between individuals and within individuals, and this can result in unpredictable toxicity and variable antineoplastic effects. Previously unrecognized variables (such as genetic polymorphisms) are now known to have a significant impact on drug disposition. How can the pharmacokinetic variability of anticancer agents be reduced? This will require the understanding of correlations between pharmacokinetics and treatment outcomes, the identification of relevant patient parameters, mathematical modelling of individual and population pharmacokinetics, and the development of algorithms that will tailor doses to the individual patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The process of drug disposition.

Similar content being viewed by others

References

  1. Evans, W. E. & Relling, M. V. Clinical pharmacokinetics–pharmacodynamics of anticancer drugs. Clin. Pharmacokinet. 16, 327–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Freyer, G. et al. Pharmacokinetic studies in cancer chemotherapy: usefulness in clinical practice. Cancer Treat. Rev. 23, 153–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Masson, E. & Zamboni, W. C. Pharmacokinetic optimisation of cancer chemotherapy: effect on outcomes. Clin. Pharmacokinet. 32, 324–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Baker, S. D. et al. Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J. Natl Cancer Inst. 94, 1883–1888 (2002). In this retrospective analysis of the pharmacokinetics of 33 investigational agents as a function of BSA, BSA-based dosing was only associated with a reduction in interindividual variability in drug clearance for five agents.

    Article  CAS  PubMed  Google Scholar 

  5. Hande, K., Messenger, M., Wagner, J., Krozely, M. & Kaul, S. Inter- and intraindividual variability in etoposide kinetics with oral and intravenous drug administration. Clin. Cancer Res. 5, 2742–2747 (1999).

    CAS  PubMed  Google Scholar 

  6. Carreca, I. & Balducci, L. Oral chemotherapy of cancer in the elderly. Am. J. Cancer 1, 101–108 (2002).

    Article  CAS  Google Scholar 

  7. Demario, M. D. & Ratain, M. J. Oral chemotherapy: rational and future directions. J. Clin. Oncol. 17, 2557–2567 (1998).

    Article  Google Scholar 

  8. Juliano, R. L. & Ling, V. A. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem. Biophys. Acta. 455, 152–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Riordan, J. R. et al. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316, 817–819 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Kartner, N., Evernden-Porelle, D., Bradley, G. & Ling, V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316, 820–823 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Roninson, I. B. et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl Acad. Sci. USA 83, 4538–4542 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Sugawara, I. et al. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by monoclonal antibody, MRK16. Cancer Res. 48, 1926–1929 (1988).

    CAS  PubMed  Google Scholar 

  14. Thiebaut, F. et al. Cellular localization of the multidrug resistance gene product in normal human tissues. Proc. Natl Acad. Sci. USA 84, 7735–7738 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sparreboom, A. et al. Limited oral bioavailability and active epithelial excretion of paclitaxel caused by P-glycoprotein in the intestine. Proc. Natl Acad. Sci USA 94, 2031–2035 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bardelmeijer, H. A., van Tellingen, O., Schellens, J. H. M. & Beijnen, J. H. The oral route for the administration of cytotoxic drugs: strategies to increase the efficiency and consistency of drug delivery. Invest. New Drugs 18, 231–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. van Asperen, J. et al. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br. J. Cancer 76, 1181–1183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bardelmeijer, H. A. et al. Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin. Cancer Res. 6, 4416–4421 (2000).

    CAS  PubMed  Google Scholar 

  19. Woo, J. S., Lee, C. H., Shim, C. K. & Hwang, S. J. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR30031. Pharm. Res. 20, 24–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bardelmeijer, H. A., Ouwehand, M., Beijnen, J. H., Schellens, J. H. & van Tellingen, O. Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest. New Drugs 22, 219–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmeyer, S. et al. Functional polymorphisms of the human multi-drug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA 97, 3473–3478 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hitzl, M. et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics 11, 293–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kerb, R. et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenom. J. 1, 204–210 (2001).

    Article  CAS  Google Scholar 

  24. Kerb, R., Hoffmeyer, S. & Brinkmann, U. ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics 2, 51–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Cascorbi, I. et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin. Pharmacol. Ther. 69, 169–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kurata, Y. et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin. Pharmacol. Ther. 72, 209–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Fromm, M. F. et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol. 157, 1575–1580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamber, C. P. et al. Natural allelic variants of breast cancer resistant protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Watkins, P. B., Wrighton, S. A., Schuetz, E. G., Molowa, D. T. & Guzelian, P. S. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J. Clin. Invest. 80, 1029–1036 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolars, J. C., Schmiedlin-Ren, P., Schuetz, J. D., Fang, C. & Watkins, P. B. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J. Clin. Invest. 90, 1871–1888 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray, G. I. et al. The immunocytochemical localization and distribution of cytochrome P-450 in normal human hepatic and extrahepatic tissues with a monoclonal antibody to human cytochrome P-450. Br. J. Clin. Pharmacol. 25, 465–475 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Waziers, P. H., Cugnenc, P. H., Yang, C. S., Leroux, J. P. & Beaune, P. H. Cytochrome P450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmacol. Exp. Ther. 253, 387–394 (1990).

    CAS  PubMed  Google Scholar 

  33. Peters, W. H. & Kremers, P. G. Cytochromes P-450 in the intestinal mucosa of man. Biochem. Pharmacol. 38, 1535–1538 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Kolars, J. C. et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 4, 247–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. McKinnon, R. A. et al. Characterization of CYP3A gene subfamily expression in human gastrointestinal tissues. Gut 36, 259–267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolars, J. C., Awni, W. M., Merion, R. M. & Watkins, P. B. First-pass metabolism of cyclosporin by the gut. Lancet 338, 1488–1490 (1991). By instilling cyclosporine into the small bowel of patients during the anhepatic phase of liver transplantation and measuring cyclosporine metabolites, the authors demonstrated that cyclosporine is metabolized in the intestinal wall.

    Article  CAS  PubMed  Google Scholar 

  37. Lown, K. S. et al. Interindividual heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab. Dispos. 22, 947–955 (1994).

    CAS  PubMed  Google Scholar 

  38. Zhang, Q. Y. et al. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos. 27, 804–809 (1999).

    CAS  PubMed  Google Scholar 

  39. Vree, T. B. et al. Decreased plasma albumin concentration results in increased volume of distribution and decreased elimination of midazolam in intensive care patients. Clin. Pharmacol. Ther. 46, 537–544 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Blair, E. Y., Rivory, L. P., Clarke, S. J. & McLachlan, A. J. Population pharmacokinetics of ralitrexed in patients with advanced solid tumours. Br. J. Clin. Pharmacol. 57, 416–426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sparreboom, A. et al. Effects of α1-acid glycoprotein on the clinical pharmacokinetics of 7-hydroxystaurosporine. Clin. Cancer Res. 10, 6840–6846 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Slaviero, K. A., Clarke, S. J. & Rivory, L. P. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol. 4, 224–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Marzolini, C., Tirona, R. G. & Kim, R. B. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 5, 273–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73, 554–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kivistö, K. T., Kroemer, H. K. & Eichelbaum, M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol. 40, 523–530 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, A. P., Kaminski, D. L. & Rasmussen, A. Substrates of human hepatic cytochrome P450 3A4. Toxicology 104, 1–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wrighton, S. A. et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol. 38, 207–213 (1990).

    CAS  PubMed  Google Scholar 

  49. Shimada, T., Yamazaki, H., Mimura, M., Inui, Y. & Guengerich, F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414–423 (1994).

    CAS  PubMed  Google Scholar 

  50. Tomonori, T. et al. No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7. Biochem. Pharmacol. 57, 935–939 (1999).

    Article  Google Scholar 

  51. Williams, M. L. et al. A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br. J. Clin. Pharmacol. 49, 485–488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baker, S. D. et al. Factors affecting cytochrome P-450 3A activity in cancer patients. Clin. Cancer Res. 10, 8341–8350 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Toomey, D., Redmond, H. P. & Bouchier-Hayes, D. Mechanisms mediating cancer cachexia. Cancer 76, 2418–2426 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Mantovani, G. et al. Cytokine activity in cancer-related anorexia/cachexia; role of megestrol acetate and medroxyprogesterone acetate. Semin. Oncol. 25, 45–52 (1998).

    CAS  PubMed  Google Scholar 

  55. Shedlofsky, S. I., Isreal, B. C., McClain, C. J., Hill, D. B. & Blouin, R. A. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J. Clin. Invest. 94, 2209–2214 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heggie, G. D., Sommadossi, J. P., Cross, D. S., Huster, W. J. & Diasio, R. B. Clinical pharmacokinetics of 5-fluorouracil and its metabolism in plasma. Cancer Res. 47, 2203–2206 (1987).

    CAS  PubMed  Google Scholar 

  57. van Kuilenburg, A. B. et al. Heterozygosity for a point mutation in an invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Eur. J. Cancer 33, 2258–2264 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. van Kuilenburg, A. B. et al. Lethal outcome of a patient with complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluororuracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin. Cancer Res. 7, 2832–2839 (2001).

    PubMed  Google Scholar 

  59. Wei, X. M. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Invest. 98, 610–615 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson, M. R. et al. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin. Cancer Res. 5, 2206–2011 (1999).

    Google Scholar 

  61. Milano, G. et al. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer 79, 627–630 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Milano, G. & Etienne, M. C. Potential importance of dihydropyrimidine dehydrogenase (DPD) in cancer chemotherapy. Pharmacogenetics 4, 301–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Wells, P. G. et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab. Dispos. 32, 281–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Beutler, E., Gelbart, T. & Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: A balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl Acad. Sci. USA 95, 8170–8174 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Innocenti, F. et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk for severe neutropenia of irinotecan. J. Clin. Oncol. 22, 1382–1388 (2004). A study in humans demonstrating that homozygotes for the UGT1A1 variant are at higher risk of severe neutropaenia and have higher SN-38 AUCs than those who are heterozygous or homozygous for the common allele.

    Article  CAS  PubMed  Google Scholar 

  66. Iida, A. et al. Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J. Hum. Genet. 47, 285–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Imai, Y. et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol. Cancer Ther. 1, 611–616 (2002).

    CAS  PubMed  Google Scholar 

  68. Ito, K., Olsen, S. L., Qiu, W., Deeley, R. G. & Cole, S. P. Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. J. Biol. Chem. 276, 15616–15624 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Saito, S. et al. Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C (ABCC/MRP/CFTR). J. Hum. Genet. 47, 147–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Saito, S. et al. Three hundred twenty-six genetic variations in genes encoding nine members of the ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population. J. Hum. Genet. 47, 38–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Chu, X. Y. et al. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J. Pharmacol. Exp. Ther. 281, 304–314 (1997).

    CAS  PubMed  Google Scholar 

  72. Nakatomi, K. et al. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem. Biophys. Res. Commun. 288, 827–832 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Branch, R. A., Herbert, C. M. & Read, A. E. Determinants of serum antipyrine half-lives in patients with liver disease. Gut 14, 569–573 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sotaniemi, E. A., Pelkonen, R. O., Mokka, R. E., Huttunen, R. & Viljakainen, E. Impairment of drug metabolism in patients with liver cancer. Eur. J. Clin. Invest. 7, 269–274 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Fanucchi, M. P. et al. Phase I and clinical pharmacology study of trimetrexate administered weekly for three weeks. Cancer Res. 47, 3303–3308 (1987).

    CAS  PubMed  Google Scholar 

  76. Ratain, M. J., Vogelzang, N. J. & Sinkule, J. A. Interindividual and intraindividual variability in vinblastine pharmacokinetics. Clin. Pharmacol. Ther. 41, 61–67 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Balis, F. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin. Pharmacokinet. 11, 223–235 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. Lippens, R. J. Methotrexate. I. Pharmacology and pharmacokinetics. Am. J. Pediatr. Hematol. Oncol. 6, 379–395 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Yancik, R. Cancer burden in the aged: an epidemiologic and demographic overview. Cancer 80, 1273–1283 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Jin, Y. et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl Cancer Inst. 97, 30–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. McCune, J. S., Hatfield, A. J., Blackburn, A. A. & Leith, P. O. Potential of chemotherapy-herb interactions in adult cancer patients. Support. Care. Cancer 12, 454–462 (2004).

    Article  PubMed  Google Scholar 

  82. Lehmann, J. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Investig. 102, 1016–1023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burk, O. et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J. Biol. Chem. 279, 38379–38385 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Moore, L. B. et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA 97, 7500–7502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gardner-Stephen, D. et al. Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab. Dispos. 32, 340–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Mathijssen, R. H. J., Verweij, J., de Bruijn P., Loos, W. J. & Sparreboom, A. Effects of St. John's wort on irinotecan metabolism. J. Natl Cancer Inst. 94, 1247–1249 (2002). The results of this study on humans showed that the concomitant use of St John's wort with irinotecan decreases plasma concentrations of SN-38 and reduces the incidence of myelosuppression.

    Article  CAS  PubMed  Google Scholar 

  87. Ho, P. C., Saville, D. J. & Wanwimolruk, S. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furancocoumarins and related compounds. J. Pharm. Pharm. Sci. 4, 217–227 (2001).

    CAS  PubMed  Google Scholar 

  88. Veronese, M. L. et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J. Clin. Pharmacol. 43, 831–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Mancinelli, L. M. et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin. Pharmacol. Ther. 69, 24–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Johnson, J. A. Influence of race ethnicity on pharmacokinetics of drugs. J. Pharm. Sci. 86, 1328–1333 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Schroeder, T. J., Hariharan, S. & First, M. R. Variations in bioavailability of cyclosporine and relationship to clinical outcome in renal transplant subpopulations. Transplant Proc. 27, 837–839 (1995).

    CAS  PubMed  Google Scholar 

  92. Lindholm, A. Welsh, M., Alton, D. & Kahan, B. Demographic factors influencing cyclosporine pharmacokinetic parameters in patients with uremia: racial differences in bioavailability. Transplantation 52, 359–371 (1992).

    CAS  Google Scholar 

  93. Lewis, L. D. et al. The pharmacokinetics and pharmacodynamics of docetaxel (DCTX) in Caucasian and African American patients with solid tumors. Proc. Am. Soc. Clin. Oncol. 12, 2043 (2004).

    Article  Google Scholar 

  94. Bruno, R. et al. A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J. Pharmacokinet. Biopharm. 24, 153–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Smorenburg, C. H. et al. Randomized cross-over evaluation of body-surface area-based dosing versus flat-fixed dosing of paclitaxel. J. Clin. Oncol. 21, 197–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Alberts, D. S. & Dorr, R. T. New perspectives on an old friend: optimizing carboplatin for the treatment of solid tumors. Oncologist 3, 15–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Egorin, M. J. et al. Prospective validation of a pharmacologically based dosing scheme for the cis-diamminedichloroplatinum(II) analogue diamminecyclobutanedicarboxylato-platinum. Cancer Res. 45, 6502–6506 (1985).

    CAS  PubMed  Google Scholar 

  98. Calvert, A. H. et al. Carbopolatin dosage: prospective evaluation of a simple formula based on renal function. J. Clin. Oncol. 7, 1748–1756 (1989). The results of this prospective analysis of a pharmacokinetic-based model for carboplatin dosing show that the model accurately predicts carboplatin AUC.

    Article  CAS  PubMed  Google Scholar 

  99. Dix, S. P. et al. Association of busulfan area under the curve with veno-occlusive disease following BMT. Bone Marrow Transplant. 17, 225–230 (1996).

    CAS  PubMed  Google Scholar 

  100. Grochow, L. B. et al. Pharmacokinetics of busulfan: correlations with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother. Pharmacol. 25, 55–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Slattery, J. T. et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant. 16, 31–42 (1995).

    CAS  PubMed  Google Scholar 

  102. Chattergoon, D. S. et al. An improved limited sampling method for individualised busulphan dosing in bone marrow transplantation in children. Bone Marrow Transplant. 20, 347–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Hassan, M. et al. Busulphan kinetics and limited sampling model in children with leukemia and inherited disorders. Bone Marrow Transplant. 18, 843–850 (1996).

    CAS  PubMed  Google Scholar 

  104. Bleyzac, N. et al. Improved clinical outcome of paediatric bone marrow recipients using a test dose and Bayesian pharmacokinetic individualization of busulfan dosage regimens. Bone Marrow Transplant. 28, 743–751 (2001). In this study on humans, busulfan dosing was based on individual pharmacokinetics that were determined after a test dose, showing that this strategy accurately predicts the AUC of the definitive dose and reduced treatment-related toxicity.

    Article  CAS  PubMed  Google Scholar 

  105. Yamamoto, N. et al. Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol. 18, 2301–2308 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto, N. et al. Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J. Clin. Oncol. 23, 1061–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, L., Price, R., Aweeka, F., Bellibas, S. E. & Sheiner, L. B. Making the most of sparse clinical data by using a predictive-model-based analysis, illustrated with a stavudine pharmacokinetic study. Eur. J. Pharm. Sci. 12, 377–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Rousseau, A., Marquet, P., Debord, J., Sabot, C. & Lachatre, G. Adaptive control methods for the dose individualization of anticancer agents. Clin. Pharmacokinet. 38, 315–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Sheiner, L. B. & Steimer, J. L. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu. Rev. Pharmacol. Toxicol. 40, 67–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Jelliffe, R. W. et al. Model-based, goal oriented, individualised drug therapy: linkage of population modeling, new 'multiple model' dosage design, Bayesian feedback and individualised target goals. Clin. Pharmacokinet. 34, 57–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. FDA label information [online] < www.fda.gov/cder/foi/label/1999/50778lbl.pdf> (2003).

  112. Ralph, L. D., Thomson, A. H., Dobbs, N. A. & Twelves, C. A population model of epirubicin pharmacokinetics and application to dosage guidelines. Cancer Chemother. Pharmacol. 52, 34–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Jakobsen, P. et al. A randomized study of epirubicin at four different dose levels in advanced breast cancer. Feasibility of myelotoxicity prediction through single blood-sample measurement. Cancer. Chemother. Pharmacol. 28, 465–469 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Liebmann, J. E. et al. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br. J. Cancer 68, 1104–1109 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lopes, N. M., Adams, E. G., Pitts, T. W. & Bhuyan, B. K. Cell kill kinetics and cell cycle effects of Taxol on human and hamster ovarian cell lines. Cancer Chemother. Pharmacol. 32, 235–242 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Raymond, E. et al. Effects of prolonged versus short-term exposure paclitaxel (Taxol) on human tumor colony-forming units. Anticancer Drugs 8, 379–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Meerum Terwogt, J. M. et al. Co-administration of cyclosporin A enables oral therapy with paclitaxel. Clin. Cancer Res. 5, 3379–3384 (1999).

    CAS  PubMed  Google Scholar 

  118. Malingré, M. M. et al. Phase I and pharmacokinetic study of oral paclitaxel. J. Clin. Oncol. 18, 2468–2475 (2000).

    Article  PubMed  Google Scholar 

  119. Kruijtzer, C. M. F. et al. Phase II and pharmacologic study of weekly oral paclitaxel plus cyclosporine in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 20, 4508–4516 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Kruijtzer, C. M. F. et al. Weekly oral paclitaxel as first-line treatment in patients with advanced gastric cancer. Ann. Oncol. 14, 197–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Ten Bokkel Huinink, W. W. et al. Single-agent gemcitabine: an active and better tolerated alternative to standard cisplatin-based therapy in locally advanced or metastatic non-small cell lung cancer. Lung Cancer 26, 85–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Socinski, M. A. Single-agent paclitaxel in the treatment of advanced non-small cell lung cancer. Oncologist 4, 408–416 (1994).

    Article  Google Scholar 

  123. Ranson, M. et al. Randomized trial of paclitaxel plus supportive care versus supportive care for patients with advanced non-small cell lung cancer. J. Natl Cancer Inst. 92, 1074–1080 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Cullinan, S. A. et al. Controlled evaluation of three drug combination regimens versus fluorouracil alone for the therapy of advanced gastric cancer. J. Clin. Oncol. 12, 412–416 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Wils, J. A. et al. Sequential high-dose methotrexate and fluorouracil combined with doxorubicin. A step ahead in the treatment of advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cooperative Group. J. Clin. Oncol. 9, 827–831 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Webb, A. et al. Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin and methotrexate in advanced esophagogastric cancer. J. Clin. Oncol. 15, 261–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Gupta, E., Safa, A. R., Wang, X. & Ratain, M. J. Pharmacokinetic modulation of irinotecan and metabolites by cyclosporine A. Cancer Res. 56, 1309–1314 (1996).

    CAS  PubMed  Google Scholar 

  128. Chester, J. D. et al. Phase I and pharmacokinetic study of intravenous irinotecan plus oral ciclosporin in patients with fluorouracil-refractory metastatic colon cancer. J. Clin. Oncol. 21, 1125–1132 (2003). The results of this study in humans show that the modulation of irinotecan by cyclosporine increases the AUC of irinotecan and its metabolites, and decreases irinotecan clearance.

    Article  CAS  PubMed  Google Scholar 

  129. Sanathanan, L. P. & Peck, C. C. The randomized concentration-controlled trial: an evaluation of its sample-size efficiency. Control. Clin. Trials 12, 780–794 (1991). This report outlines the design and advantages of the randomized concentration-controlled trial for drugs with narrow therapeutic windows.

    Article  CAS  PubMed  Google Scholar 

  130. Christensen, J., Andreasen, F., Poulsen, J. H. & Dam, M. Randomized, concentration-controlled trial of topiramate in refractory focal epilepsy. Neurology 61, 1210–1218 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Ratain, M. J. & Relling, M. V. Gazing into a crystal ball-cancer therapy in the post-genomic era. Nature Med. 7, 283–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Benet, L. Z. & Galeazzi, R. L. Noncompartmental determination of the steady-state volume of distribution. J. Pharm. Sci. 68, 1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  133. DiStefano, J. J. III. Noncompartmental vs. compartmental: some basis for choice. Am. J. Physiol. 243, R1–R6 (1982).

    Article  PubMed  Google Scholar 

  134. Gillespie, W. R. Noncompartmental versus compartmental modeling in clinical pharmacokinetics. Clin. Pharmacokinet. 20, 253–262 (1991).

    Article  CAS  PubMed  Google Scholar 

  135. Metzler, C. M. Usefulness of the two-compartment open model in pharmacokinetics. J. Am. Stat. Assoc. 66, 49–54 (1971).

    Article  Google Scholar 

  136. Gibaldi, M. & Perrier, D. in Pharmacokinetics (ed. Swarbrick, J.) 199–219 (Marcel Dekker, New York, 1982).

    Book  Google Scholar 

  137. Iber, F. L., Murphy, P. A. & Connor, E. S. Age-related changes in the gastrointestinal system: effects on drug therapy. Drugs Aging 5, 34–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Corcoran, M. E. Polypharmacy in the older patient with cancer. Cancer Control 4, 419–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Skirvin, J. A. & Lichtman, S. M. Pharmacokinetic considerations of oral chemotherapy in elderly patients with cancer. Drugs Aging 19, 25–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Johnson, S. L., Mayersohn, M. & Conrad, K. A. Gastrointestinal absorption as a function of age: xylose absorption in healthy adults. Clin. Pharmacol. Ther. 38, 331–335 (1985).

    Article  CAS  PubMed  Google Scholar 

  141. Baker, S. D. & Grochow, L. B. Pharmacology of cancer chemotherapy in the older person. Clin. Geriatr. Med. 13, 169–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Egorin, M. J. Cancer pharmacology in the elderly. Semin. Oncol. 20, 43–49 (1993).

    CAS  PubMed  Google Scholar 

  143. Pierelli, L. et al. Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitor-cell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. J. Clin. Oncol. 17, 1288–1295 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Schrijvers, D., Highley, M., De Bruyn E., Van Oosterom, A. T. & Vermorken, J. B. Role of red blood cells in pharmacokinetics of chemotherapeutic agents. Anticancer Drugs 10, 147–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Extermann, M. et al. Predictors of tolerance to chemotherapy in older cancer patients: a prospective pilot study. Eur. J. Cancer 38, 1466–1473 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Sotaniemi, E. A., Arranto, A. J., Pelkonen, O. & Pasanen M. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin. Pharmacol. Ther. 61, 332–339 (1997).

    Article  Google Scholar 

  147. Vestal, R. E. Aging and pharmacology. Cancer 80, 1302–1310 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Brenner, B. M., Meyer, G. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).

    Article  CAS  PubMed  Google Scholar 

  149. Anderson, S. & Brenner, B. M. Effects of aging on the renal glomerulus. Am. J. Med. 80, 435–442 (1986).

    Article  CAS  PubMed  Google Scholar 

  150. Lichtman, S. M. & Villani, G. Chemotherapy in the elderly: pharmacologic considerations. Cancer Control 7, 548–556 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Ratain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABCB1

ABCC2

ABCG2

CYP2C19

CYP2D6

CYP3A4

CYP3A5

PXR

SLCO1B1

UGT1A1

FURTHER INFORMATION

Pharmacogenetics of Anticancer Agents Research Group

The Pharmacogenetics and Pharmacogenomics Knowledge Base

Glossary

ABSORPTION

The process by which a drug leaves its site of administration and enters systemic circulation. Not relevant to intravenously administered agents.

DISTRIBUTION

The process by which a drug distributes into interstitial and intracellular fluids.

METABOLISM

The process by which a drug undergoes biotransformation to a usually inactive (but sometimes active) metabolite.

EXCRETION

The process by which a drug and/or its metabolites are removed from the body.

THERAPEUTIC INDEX

Conceptual description of the ratio of the toxic dose to the therapeutic dose of a drug, describing the dose range over which a drug is therapeutic but not unacceptably toxic.

COEFFICIENT OF VARIATION

The ratio of the standard deviation to the mean, multiplied by 100%. A high coefficient of variation means high interindividual variability.

BIOAVAILABILITY

The fraction of an administered dose that reaches systemic circulation.

FIRST-PASS EFFECT

The decrease in bioavailability of an oral drug owing to enteric metabolism, hepatic metabolism and excretion before the drug reaches the systemic circulation.

AREA UNDER THE CURVE (AUC).

The area under the curve in a graph of plasma concentration against time — a measure of drug exposure.

POLYMORPHISM

The presence of two or more alleles with a frequency of at least 1% in the general population at the same gene locus.

CYTOCHROME P450 ENZYMES

A family of haeme-containing intracellular oxidizing enzymes that are responsible for the first phase of metabolism of many drugs.

PRODRUGS

Pharmacologically inactive derivatives of active drugs that must undergo metabolic conversion to the active agent.

PHARMACOGENETICS

The study of genetically determined variations in drug response.

PLEURAL EFFUSION

An abnormal collection of fluid between the thin layers of tissue (pleura) lining the lung and wall of the chest cavity.

AMPHIPATHIC

Containing both hydrophilic and hydrophobic domains.

GLOMERULAR FILTRATION RATE

A measure of renal function that equals the quantity of glomerular filtrate formed per unit of time in all nephrons of both kidneys.

VENO-OCCLUSIVE DISEASE

A complication of bone-marrow transplantation in which there is obstruction of the terminal venules and/or sinusoids in the liver. Clinical features include hyperbilirubinaemia, painful hepatomegaly and fluid retention.

BILIRUBIN

A breakdown product of haeme that circulates in the plasma, is taken up by the liver and conjugated so that it is water soluble, and is then excreted in the bile. It is routinely measured as a blood test to assess liver function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Undevia, S., Gomez-Abuin, G. & Ratain, M. Pharmacokinetic variability of anticancer agents. Nat Rev Cancer 5, 447–458 (2005). https://doi.org/10.1038/nrc1629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing