Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The origin of the cancer stem cell: current controversies and new insights

An Erratum to this article was published on 01 December 2005

Abstract

Most tumours are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell) that has the capacity to proliferate and form tumours in vivo. However, the origin of the cancer stem cell remains elusive. Interestingly, during development and tissue repair the fusion of genetic and cytoplasmic material between cells of different origins is an important physiological process. Such cell fusion and horizontal gene-transfer events have also been linked to several fundamental features of cancer and could be important in the development of the cancer stem cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in stem cells and/or progenitor cells might give rise to cancer stem cells.
Figure 2: Fusion of cells under physiological conditions.
Figure 3: Cell fusion, a potential mechanism of cellular transdifferentiation.
Figure 4: Cell fusion in the context of tumour progression.
Figure 5: Cancer initiation and progression mediated by horizontal gene-transfer phenomena.

Similar content being viewed by others

References

  1. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  2. Grander, D. How do mutated oncogenes and tumor suppressor genes cause cancer? Med. Oncol. 15, 20–26 (1998).

    Article  CAS  Google Scholar 

  3. Heppner, G. H. & Miller, F. R. The cellular basis of tumor progression. Int. Rev. Cytol. 177, 1–56 (1998).

    CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  5. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  Google Scholar 

  6. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  7. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  Google Scholar 

  8. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  Google Scholar 

  9. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    CAS  Google Scholar 

  10. Marx, J. Cancer research. Mutant stem cells may seed cancer. Science 301, 1308–1310 (2003).

    Article  CAS  Google Scholar 

  11. Hansemann, D. Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch. Pathol. Anat. 119, 299–326 (1890).

    Article  Google Scholar 

  12. Boveri, T. Zur Frage der Enstehung maligner Tumoren (Gustav Fischer Verlag, Jena, 1914).

    Google Scholar 

  13. Duesberg, P., Fabarius, A. & Hehlmann, R. Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 56, 65–81 (2004).

    Article  CAS  Google Scholar 

  14. Duesberg, P. Does aneuploidy or mutation start cancer? Science 307, 41 (2005).

    Article  CAS  Google Scholar 

  15. Bachoo, R. M, et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    Article  CAS  Google Scholar 

  16. Fomchenko, E. I. & Holland, E. C. Stem cells and brain cancer. Exp. Cell Res. 306, 323–329 (2005).

    Article  CAS  Google Scholar 

  17. Ilyas, M., Straub, J., Tomlinson, I. P. & Bodmer, W. F. Genetic pathways in colorectal and other cancers. Eur. J. Cancer 35, 1986–2002 (1999).

    Article  CAS  Google Scholar 

  18. Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nature Rev. Cancer 3, 434–443 (2003).

    Article  CAS  Google Scholar 

  19. Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).

    Article  CAS  Google Scholar 

  20. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  21. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  Google Scholar 

  22. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  Google Scholar 

  23. Sutherland, H. J., Blair, A. & Zapf, R. W. Characterization of a hierarchy in human myeloid leukemia progenitor cells. Blood 87, 4754–4761 (1996).

    CAS  PubMed  Google Scholar 

  24. Bruce, W. R. & Van Der Gaag, H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963).

    Article  CAS  Google Scholar 

  25. Reya, T. & Clevers, H. Wnt signaling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  26. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    Article  CAS  Google Scholar 

  27. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    CAS  PubMed  Google Scholar 

  28. Jordan, C. T. et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  Google Scholar 

  29. Passegue, E., Jamieson, C. H., Ailles. L. E. & Weissman, I. L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl Acad. Sci. USA 100 (Suppl.), 11842–11849 (2003).

    Article  CAS  Google Scholar 

  30. Mueller, M. M. & Fusenig, N. E. Friends or foes — bipolar effects of tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    Article  CAS  Google Scholar 

  31. Nelson, W. G., DeWeese, T. L. & DeMarso, A. M. The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev. 21, 3–16 (2002).

    Article  CAS  Google Scholar 

  32. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  Google Scholar 

  33. Galli, R. et al. Skeletal myogenic potential of human and mouse neural stem cells. Nature Neurosci. 3, 986–991 (2000).

    Article  CAS  Google Scholar 

  34. Rietze, R. L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  CAS  Google Scholar 

  35. Oh, S. H. et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84, 607–617 (2004).

    Article  CAS  Google Scholar 

  36. Borue, X. et al. Bone marrow. derived cells contribute to epithelial engraftment during wound healing. Am. J. Pathol. 165, 1767–1772 (2004).

    Article  Google Scholar 

  37. Palermo, A. T et al. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev. Biol. 279, 336–344 (2005).

    Article  CAS  Google Scholar 

  38. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult bone marrow. Nature 418, 41–49 (2002).

    Article  CAS  Google Scholar 

  39. Direkze, N. C. et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495 (2004).

    Article  CAS  Google Scholar 

  40. Peters, B. A. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Med. 11, 261–262 (2005).

    Article  CAS  Google Scholar 

  41. Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571 (2004).

    Article  CAS  Google Scholar 

  42. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    Article  CAS  Google Scholar 

  43. Camargo, F. D., Chambers, S. M. & Goodell, M. A. Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif. 37, 55–65 (2004).

    Article  CAS  Google Scholar 

  44. O'Malley, K. & Scott, E. W. Stem cell fusion confusion. Exp. Hematol. 32, 131–134 (2004).

    Article  Google Scholar 

  45. Pomerantz, J. & Blau, H. M. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature Cell Biol. 6, 810–816 (2004).

    Article  CAS  Google Scholar 

  46. Weimann, J. M., Johansson, C. B., Trejo, A. & Blau, H. M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nature Cell Biol. 5, 959–966 (2003).

    Article  CAS  Google Scholar 

  47. Blau, H. M. & Blakely, B. T. Plasticity of cell fate: insights from heterokaryons. Semin. Cell. Dev. Biol. 10, 267–272 (1999).

    Article  CAS  Google Scholar 

  48. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    Article  CAS  Google Scholar 

  49. Vassilopoulos, G., Wang, P. R. & Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  Google Scholar 

  50. Farkas-Bargeton, E. et al. Immaturity of muscle fibers in the congenital form of myotonic dystrophy: its consequences and its origin. J. Neurol. Sci. 83, 145–159 (1988).

    Article  CAS  Google Scholar 

  51. Wockel, L. et al. Abundant minute myotubes in a patient who later developed centronuclear myopathy. Acta Neuropathol. (Berlin) 95, 547–551 (1998).

    CAS  Google Scholar 

  52. Redman, C. W. & Sargent, I. L. Placental debris, oxidative stress and pre-eclampsia. Placenta 21, 597–602 (2000).

    Article  CAS  Google Scholar 

  53. Miyamoto, T. & Suda, T. Differentiation and function of osteoclasts. Keio J. Med. 52, 1–7 (2003).

    Article  Google Scholar 

  54. Shemer, G. & Podbilewicz, B. The story of cell fusion: big lessons from little worms. Bioessays 25, 672–682 (2003).

    Article  Google Scholar 

  55. Ogle, B. M., Cascalho, M. & Platt, J. L. Biological implications of cell fusion. Nature Rev. Mol. Cell Biol. 6, 567–575 (2005).

    Article  CAS  Google Scholar 

  56. Harris, H. & Watkins, J. F. Hybrid cells derived from mouse an man: artificial hetrokaryons of mammalian cells from different species. Nature 205, 640–646 (1965).

    Article  CAS  Google Scholar 

  57. Duelli, D. & Lazebnik, Y. Cell fusion: a hidden enemy? Cancer Cell 3, 445–448 (2003).

    Article  CAS  Google Scholar 

  58. Pawelek, J. M. Tumour cell hybridization and metastasis revisited. Melanoma Res. 10, 507–514 (2000).

    Article  CAS  Google Scholar 

  59. Aractingi, S. et al. Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res. 65, 1755–1760 (2005).

    Article  CAS  Google Scholar 

  60. Rustom, A. et al. Nanotubular highways for intercellular organelle transport. Science 303, 1107–1010 (2004).

    Article  Google Scholar 

  61. Koyanagi, M. et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism of cell fate changes? Circ. Res. 96, 1039–1041 (2005).

    Article  CAS  Google Scholar 

  62. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  Google Scholar 

  63. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–547 (2002).

    Article  CAS  Google Scholar 

  64. Chen, E. H. & Olson, E. N. Unveiling the mechanisms of cell–cell fusion. Science 308, 369–373 (2005).

    Article  CAS  Google Scholar 

  65. Vignery, A. Osteoclasts and giant cells: macrophage–macrophage fusion mechanisms. Int. J. Exp. Pathol. 81, 291–304 (2000).

    Article  CAS  Google Scholar 

  66. Horsley, V., Jansen. K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    Article  CAS  Google Scholar 

  67. Horsley, V. & Pavlath, G. K. Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176, 67–78 (2004).

    Article  Google Scholar 

  68. Kucia, M. et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of SDF-1–CXCR4 axis. Stem Cells 23, 879–894 (2005).

    Article  CAS  Google Scholar 

  69. Wright, L. M. et al. Stromal cell derived factor 1 binding to its chemoline receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36, 840–853 (2005).

    Article  CAS  Google Scholar 

  70. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  71. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  Google Scholar 

  72. Bursch, W. et al. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11, 847–853 (1990).

    Article  CAS  Google Scholar 

  73. Lake, J. A., Jain, R. & Rivera, M. C. Mix and match in the tree of life. Science 283, 2027–2028 (1999).

    Article  CAS  Google Scholar 

  74. Ochman, H., Lawrence. J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  Google Scholar 

  75. Holmgren, L. et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93, 3956–3963 (1999).

    CAS  PubMed  Google Scholar 

  76. Bergsmedh, A. et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc. Natl Acad. Sci. USA 98, 6407–6411 (2001).

    Article  CAS  Google Scholar 

  77. Bjerknes, R., Bjerkvig, R. & Laerum, O. D. Phagocytic capacity of normal and malignant rat glial cells in culture. J. Natl Cancer Inst. 78, 279–288 (1987).

    CAS  PubMed  Google Scholar 

  78. Vignery, A. Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol. 15, 188–193 (2005).

    Article  CAS  Google Scholar 

  79. Hilda, K. & Klagsbrun. M. A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res. 64, 8249–8255 (2005).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Norwegian Cancer Society, the Norwegian Research Council, Centre Recherche Public Santé, Luxembourg, Helse Vest Haukeland Hospital, Bergen, Norway, City of Hope National Medical Center and Beckman Research Institute, and the Stop Cancer Foundation, California, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bjerkvig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BMI1

CD44

CD47

CXCR4

IL-4

PTPNS1

SDF1

National Cancer Institute

AML

glioma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerkvig, R., Tysnes, B., Aboody, K. et al. The origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5, 899–904 (2005). https://doi.org/10.1038/nrc1740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing