Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein–Barr virus: 40 years on

Key Points

  • Epstein–Barr virus (EBV) infection is implicated in the aetiology of several different lymphoid and epithelial malignancies.

  • EBV-encoded latent genes induce B-cell transformation in vitro by altering cellular gene transcription and constitutively activating key cell-signalling pathways.

  • EBV exploits the physiology of normal B-cell differentiation to persist within the memory-B-cell pool of the immunocompetent host.

  • Immunosuppressed transplant patients are at risk of developing fatal EBV-transformed B-cell proliferations, presenting as 'post-transplant lymphomas'.

  • Other EBV-associated tumours show more restricted forms of latent gene expression, reflecting a more complex pathogenesis that involves additional cofactors.

  • Pharmacological and immunotherapeutic approaches are being developed to treat or prevent EBV-associated tumours.

Abstract

Epstein–Barr virus (EBV) was discovered 40 years ago from examining electron micrographs of cells cultured from Burkitt's lymphoma, a childhood tumour that is common in sub-Saharan Africa, where its unusual geographical distribution — which matches that of holoendemic malaria —indicated a viral aetiology. However, far from showing a restricted distribution, EBV — a γ-herpesvirus — was found to be widespread in all human populations and to persist in the vast majority of individuals as a lifelong, asymptomatic infection of the B-lymphocyte pool. Despite such ubiquity, the link between EBV and 'endemic' Burkitt's lymphoma proved consistent and became the first of an unexpectedly wide range of associations discovered between this virus and tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Epstein–Barr virus genome.
Figure 2: The EBV-encoded nuclear antigens.
Figure 3: Structure and function of LMP1.
Figure 4: Structure and function of LMP2.
Figure 5: Putative in vivo interactions between Epstein–Barr virus and host cells.

Similar content being viewed by others

References

  1. Epstein, M. A., Barr, Y. M. & Achong, B. G. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 15, 702–703 (1964). The discovery of EBV — the first description of a virus based on the use of the electron microscope.

    Article  Google Scholar 

  2. Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V. & Cooper, N. R. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein–Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complment fragment C3d. J. Virol. 61, 1416–1420 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borza, C. M. & Hutt-Fletcher, L. M. Alternate replication in B-cells and epithelial cells switches tropism of Epstein–Barr virus. Nature Med. 8, 594–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Kieff, E. & Rickinson, A. B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2511–2574 (Lippincott Williams and Wilkins, Philadelphia, 2001).

    Google Scholar 

  5. Kieff, E. & Rickinson, A. B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2575–2627 (Lippincott Williams and Wilkins, Philadelphia, 2001).

    Google Scholar 

  6. Rowe, M. et al. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 6, 2743–2751 (1987). First description of distinct forms of EBV latency in Burkitt's lymphoma cells, as compared to EBV-transformed B-cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, F. et al. Epstein–Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J. Virol. 64, 2309–2318 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375, 685–688 (1995). Demonstration that the Gly-Ala-repeat domain of EBNA1 protects the protein from proteasome-mediated degradation.

    Article  CAS  PubMed  Google Scholar 

  9. Voo, K. S. et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J. Exp. Med. 199, 459–470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. P. et al. CD8 T cell recognition of endogenously expressed Epstein–Barr virus nuclear antigen 1. J. Exp. Med. 199, 1409–1420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tellam, J. et al. Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J. Exp. Med. 199, 1421–1431 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Humme, S. et al. The EBV nuclear antigen1 (EBNA1) enhances B cell immortalisation several thousandfold. Proc. Natl Acad. Sci. USA 100, 10989–10994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson, J. B., Bell, J. L. & Levine, A. J. Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 15, 3117–3126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kennedy, G., Komano, J. & Sugden, B. Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. Proc. Natl Acad. Sci. USA 100, 14269–14274 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammerschmidt, W. & Sugden, B. Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340, 393–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Cohen, J. I., Wang, F., Mannick, J. & Kieff, E. Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA 86, 9558–9562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grossman, S. R., Johannsen, E., Tong, R., Yalamanchili, R. & Kieff, E. The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jκ recombination signal binding protein. Proc. Natl Acad. Sci. USA 91, 7568–7572 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, J. J. & Hayward, S. D. Masking of the CBF1/RBPJκ transcriptional repression domain by Epstein–Barr virus EBNA2. Science 268, 560–563 (1995). This and the previous paper were the first to show that EBNA2 influences gene transcription by affecting the notch/RBP–Jκ pathway.

    Article  CAS  PubMed  Google Scholar 

  19. Mannick, J. B., Cohen, J. I., Birkenbach, M., Marchini, A. & Kieff, E. The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J. Virol. 65, 6826–6837 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinclair, A. J., Palmero, I., Peters, G. & Farrell, P. J. EBNA-2 and EBNA-LP cooperate to cause G0 and G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J. 13, 3321–3328 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robertson, E., Lin, J. & Kieff, E. The amino-terminal domains of Epstein–Barr virus nuclear proteins 3A, 3B and 3C interact with RBPJκ. J. Virol. 70, 3068–3074 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, B., Marshall, D. R. & Sample, C. E. A conserved domain of the Epstein–Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jκ. J. Virol. 70, 4228–4236 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomkinson, B., Robertson, E. & Kieff, E. Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol. 67, 2014–2025 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Parker, G. A. et al. Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13, 2541–2549 (1996).

    CAS  PubMed  Google Scholar 

  25. Parker, G. A., Touitou, R. & Allday, M. J. Epstein–Barr virus EBNA3C can disrupte multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 19, 700–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Radkov, S. A. et al. Epstein–Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J. Virol. 73, 5688–5697 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, D., Liebowitz, D. & Kieff, E. An EBV membrane protein expressed in immortalised lymphocytes transforms established rodent cells. Cell 43, 831–840 (1985). First study to show that LMP1 functions as a classic oncogene in a rodent cell-transformation assay.

    Article  CAS  PubMed  Google Scholar 

  28. Kaye, K. M., Izumi, K. M. & Kieff, E. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl Acad. Sci. USA 90, 9150–9154 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henderson, S. et al. Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65, 1107–1115 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Laherty, C. D., Hu, H. M., Opipari, A. W., Wang, F. & Dixit, V. M. The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor κB. J. Biol. Chem. 267, 24157–24160 (1992).

    CAS  PubMed  Google Scholar 

  31. Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W. & Young, L. S. Activation of the p38 mitogen-activated protein kinase pathway by Epstein–Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J. Biol. Chem. 274, 16085–16096 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Eliopoulos, A. G. et al. Epstein–Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-κB pathway involving TNF receptor-associated factors. Oncogene 14, 2899–2916 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Mosialos, G. et al. The Epstein–Barr virus transforming protein LMP1 engages signalling proteins for the tumour necrosis factor receptor family. Cell 80, 389–399 (1995). Important study showing that LMP1 functions as a constitutively activated member of the TNF receptor family by interacting with common accessory proteins.

    Article  CAS  PubMed  Google Scholar 

  34. Gires, O. et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J. 16, 6131–6140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700–1709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uchida, J. et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 286, 300–303 (1999). In vivo demonstration that LMP1 can partially substitute for absence of the CD40 receptor.

    Article  CAS  PubMed  Google Scholar 

  37. Eliopoulos, A. G. & Young, L. S. LMP1 structure and signal transduction. Semin. Cancer Biol. 11, 435–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Longnecker, R. Epstein–Barr virus latency: LMP2, a regulator or means for Epstein–Barr virus persistence? Adv. Cancer Res. 79, 175–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Scholle, F., Bendt, K. M. & Raab-Traub, N. Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol. 74, 10681–10689 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Portis, T., Dyck, P. & Longnecker, R. Epstein–Barr virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102, 4166–4178 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Portis, T. & Longnecker, R. Epstein–Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol. 77, 105–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takada, K. & Nanbo, A. The role of EBERs in oncogenesis. Semin. Cancer Biol. 11, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Nanbo, A., Inoue, K., Adachi-Takasawa, K. & Takada, K. Epstein–Barr virus RNA confers resistance to interferon-α-induced apoptosis in Burkitt's lymphoma. EMBO J. 21, 954–965 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruf, I. K., Rhyne, P. W., Yang, C., Cleveland, J. L. & Sample, J. T. Epstein–Barr virus small RNAs potentiate tumourigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J. Virol. 74, 10223–10228 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hitt, M. M. et al. EBV gene expression in an NPC-related tumour. EMBO J. 8, 2639–2651 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deacon, E. M. et al. Epstein–Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 177, 339–349 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, H., Smith, P., Ambinder, R. F. & Hayward, S. D. Expression of Epstein–Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood 93, 3026–3032 (1999).

    CAS  PubMed  Google Scholar 

  49. Karran, L., Gao, Y., Smith, P. R. & Griffin, B. E. Expression of a family of complementary-strand transcripts in Epstein–Barr virus-infected cells. Proc. Natl Acad. Sci. USA 89, 8058–8062 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, P. R. et al. Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J. Virol. 74, 3082–3092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Decaussin, G., Sbih-Lammali, F., de Turenne-Tessier, M., Bouguermouh, A. & Ooka, T. Expression of BARF1 gene encoded by Epstein–Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res. 60, 5584–5588 (2000).

    CAS  PubMed  Google Scholar 

  52. zur Hausen, A. et al. Unique transcription pattern of Epstein–Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 60, 2745–2748 (2000).

    CAS  PubMed  Google Scholar 

  53. Sheng, W., Decaussin, G., Sumner, S. & Ooka, T. N-terminal domain of BARF1 gene encoded by Epstein–Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene 20, 1176–1185 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Anagnostopoulos, I., Hummel, M., Kreschel, C. & Stein, H. Morphology, immunophenotype and distribution of latently and/or productively Epstein–Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein–Barr virus. Blood 85, 744–750 (1995).

    CAS  PubMed  Google Scholar 

  55. Kurth, J. et al. Epstein–Barr virus-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13, 485–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998). Important series of papers from the same group suggesting that EBV exploits the physiology of normal B-cell differentiation to persist within the memory-B-cell pool of the immunocompetent host.

    Article  CAS  PubMed  Google Scholar 

  57. Hochberg, D. et al. Acute infection with Epstein–Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Babcock, G. J., Hochberg, D. & Thorley-Lawson, D. A. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Laichalk, L. L., Hochberg, D., Babcock, G. J., Freeman, R. B. & Thorley-Lawson, D. A. The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity 16, 745–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hislop, A. D., Annels, N. E., Gudgeon, N. H., Leese, A. M. & Rickinson, A. B. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein–Barr virus infection. J. Exp. Med. 195, 893–905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Young, L. et al. Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med. 321, 1080–1085 (1989). First demonstration of EBV latent protein expression in post-transplantation lymphomas.

    Article  CAS  PubMed  Google Scholar 

  62. Timms, J. M. et al. Target cells of Epstein–Barr virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin's lymphoma. Lancet 361, 217–223 (2003).

    Article  PubMed  Google Scholar 

  63. Capello, D. et al. Molecular histogenesis of post-transplantation lymphoproliferative disorders. Blood 102, 3775–3785 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Hsu, J. L. & Glaser, S. L. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit. Rev. Oncol. Hematol. 34, 27–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Kanzler, H., Kuppers, R., Hansmann, M. L. & Rajewsky, K. Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumour clone derived from (crippled) germinal center B cells. J. Exp. Med. 184, 1495–1505 (1996). One of the first studies to isolate the malignant cells of Hodgkin's lymphoma and definitively determine the origin of these cells by immunoglobulin-gene sequencing.

    Article  CAS  PubMed  Google Scholar 

  66. Kuppers, R. Molecular biology of Hodgkin's lymphoma. Adv. Cancer Res. 84, 277–312 (2002).

    Article  PubMed  Google Scholar 

  67. Schwering, I. et al. Loss of the B lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101, 1505–1512 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Polack, A. et al. c-myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc. Natl Acad. Sci. USA 93, 10411–10416 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kovalchuk, A. L. et al. Burkitt lymphoma in the mouse. J. Exp. Med. 192, 1183–1190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Z. et al. A global transcriptional regulatory role for c-myc in Burkitt's lymphoma. Proc. Natl Acad. Sci. USA 100, 8146–8169 (2003).

    Article  CAS  Google Scholar 

  71. Lindstrom, M. S. & Wiman, K. G. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin. Cancer Biol. 12, 381–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Chapman, C. J., Mockridge, C. I., Rowe, M., Rickinson, A. B. & Stevenson, F. K. Analysis of V-H genes used by neoplastic B cells in endemic Burkitts lymphoma shows somatic hypermutation and intraclonal heterogeneity. Blood 85, 2176–2181 (1995).

    CAS  PubMed  Google Scholar 

  73. Klein, U., Klein, G., Ehlin-Henriksson, B., Rajewsky, K. & Kuppers, R. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V-region genes. Mol. Med. 1, 495–505 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris, R. S., Croom-Carter, D., Rickinson, A. B. & Neuberger, M. S. Epstein–Barr virus and the somatic hypermutation of immunoglobulin genes in Burkitt's lymphoma cells. J. Virol. 75, 10488–10492 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kelly, G., Bell, A. & Rickinson, A. B. Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA1. Nature Med. 8, 1098–1104 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Pajic, A. et al. Antagonistic effects of c-myc and Epstein–Barr virus latent genes on the phenotype of human B cells. Int. J. Cancer 93, 810–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kang, M. S., Hung, S. C. & Kieff, E. Epstein–Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc. Natl Acad. Sci. USA 98, 15233–15238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kiss, C. et al. T cell leukaemia I oncogene expression depends on the presence of Epstein–Barr virus in the virus-carrying Burkitt lymphoma lines. Proc. Natl Acad. Sci. USA 100, 4813–4818 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nature Rev. Cancer 2, 373–382 (2002).

    Article  CAS  Google Scholar 

  80. Araujo, I. et al. Frequent expansion of Epstein–Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J. Pathol. 187, 326–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Jones, J. F. et al. T-cell lymphomas containing Epstein–Barr viral DNA in patients with chronic Epstein–Barr virus infections. N. Engl. J. Med. 318, 733–741 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Harabuchi, Y. et al. Epstein–Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335, 128–130 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Kanegane, H., Nomura, K., Miyawaki, T. & Tosato, G. Biological aspects of Epstein–Barr virus (EBV)-infected lymphocytes in chronic active EBV infection and associated malignancies. Crit. Rev. Oncol. Haematol. 44, 239–249 (2002).

    Article  Google Scholar 

  84. Kikuta, H. et al. Epstein–Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawaski-like disease. Nature 333, 455–457 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Kanavaros, P. et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein–Barr virus. Blood 81, 2688–2695 (1993).

    CAS  PubMed  Google Scholar 

  86. Raab-Traub, N. Epstein–Barr virus in the pathogenesis of NPC. Semin. Cancer Biol. 12, 431–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Yu, M. C. & Yuan, J. M. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 12, 421–429 (2002).

    Article  PubMed  Google Scholar 

  88. Yu, M. C., Ho, J. H., Lai, S. H. & Henderson, B. E. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case–control study in Hong Kong. Cancer Res. 46, 956–961 (1986).

    CAS  PubMed  Google Scholar 

  89. Raab-Traub, N. & Flynn, K. The structure of the termini of the Epstein–Barr virus as a marker of clonal cellular proliferation. Cell 47, 883–889 (1986).

    Article  CAS  PubMed  Google Scholar 

  90. Zeng, Y. Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv. Cancer Res. 44, 121–138 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Chan, A. T. C. et al. Plasma Epstein–Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl Cancer Inst. 94, 1614–1619 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Pathmanathan, R. et al. Undifferentiated, non-keratinising, and squamous cell carcinoma of the nasopharynx. Variants of Epstein–Barr virus-infected neoplasia. Am. J. Pathol. 146, 1355–1367 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shibata, D. & Weiss, L. M. Epstein–Barr virus-associated gastric adenocarcinoma. Am. J. Pathol. 140, 769–774 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tokunaga, M. et al. Epstein–Barr virus in gastric carcinoma. Am. J. Pathol. 143, 1250–1254 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Imai, S. et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein. Proc. Natl Acad. Sci. USA 91, 9131–9135 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schneider, B. G. et al. Loss of p16/CDKN2A tumour suppressor protein in gastric adenocarcinoma is associated with Epstein–Barr virus and antomic location in the body of the stomach. Hum. Pathol. 31, 45–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, H. S., Chang, M. S., Yang, H. K., Lee, B. L. & Kim, W. H. Epstein–Barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with Epstein–Barr virus-negative carcinoma. Clin. Cancer Res. 10, 1698–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. zur Hausen, A. et al. Epstein–Barr virus in gastric carcinomas and gastric stump carcinomas: a late event in gastric carcinogenesis. J. Clin. Pathol. 57, 487–491 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bonnet, M. et al. Detection of Epstein–Barr virus in invasive breast cancers. J. Natl Cancer Inst. 91, 1376–1381 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Sugawara, Y. et al. Detection of Epstein–Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterised by the absence of EBV-encoded small RNA expression. Virology 256, 196–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Murray, P. G. et al. Reactivity with a monoclonal antibody to Epstein–Barr virus (EBV) nuclear antigen 1 defines a subset of aggressive breast cancers in the absence of the EBV genome. Cancer Res. 63, 2338–2343 (2003).

    CAS  PubMed  Google Scholar 

  102. Li, J. -H. et al. Tumour-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res. 62, 171–178 (2002).

    CAS  PubMed  Google Scholar 

  103. Li, J. -H. et al. Efficacy of targeted FasL in nasopharyngeal carcinoma. Mol. Ther. 8, 964–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Israel, B. F. & Kenney, S. C. Virally targeted therapies for EBV-associated malignancies. Oncogene 22, 5122–5130 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Feng, W. -H., Hong, G., Delecluse, H. J. & Kenney, S. C. Lytic induction therapy for Epstein–Barr virus-positive B-cell lymphomas. J. Virol. 78, 1893–1902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ambinder, R. F., Robertson, K. D. & Tao, Q. DNA methylation and the Epstein–Barr virus. Semin. Cancer Biol. 9, 369–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Chan, A. T. C. et al. Azacitidine induces demethylation of the Epstein–Barr virus genome in tumours. J. Clin. Oncol. 22, 1373–1381 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Chodosh, J. et al. Eradication of latent Epstein–Barr virus by hydroxyurea alters the growth-transformed cell phenotype. J. Infect. Dis. 177, 1194–1201 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Slobod, K. S. et al. Epstein–Barr virus-targeted therapy for AIDS-related primary lymphoma of the central nervous system. Lancet 356, 1493–1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Piche, A., Kasono, K., Johanning, F., Curiel, T. J. & Curiel, D. T. Phenotypic knockout of the latent membrane protein 1 of Epstein–Barr virus by an intracellular single-chain antibody. Gene Ther. 5, 1171–1179 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Kenney, J. L., Guinness, M. E., Curiel, T. & Lacy, J. Antisense to the Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and Bcl-2 expression and promotes apoptosis in EBV-immortalised B cells. Blood 92, 1721–1727 (1998).

    CAS  PubMed  Google Scholar 

  112. Cahir-McFarland, E. D., Davidson, D. M., Schauer, S. L., Duong, J. & Kieff, E. NFκB inhibition causes spontaneous apoptosis in Epstein–Barr virus-transformed lymphoblastoid cells. Proc. Natl Acad. Sci. USA 97, 6055–6060 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farrell, C. J. et al. Inhibition of Epstein–Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc. Natl Acad. Sci. USA 101, 4625–4630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kirchmaier, A. L. & Sugden, B. Dominant-negative inhibitors of EBNA-1 of Epstein–Barr virus. J. Virol. 71, 1766–1775 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rooney, C. M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr virus-related lymphoproliferation. Lancet 345, 9–13 (1995). First study to use adoptive transfer of EBV-specific T cells for the treatment of lymphoproliferative disease.

    Article  CAS  PubMed  Google Scholar 

  116. Khanna, R. et al. Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with post-transplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA 96, 10391–10396 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haque, T. et al. Treatment of Epstein–Barr virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360, 436–442 (2002).

    Article  PubMed  Google Scholar 

  118. Roskrow, M. A. et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 91, 2925–2934 (1998).

    CAS  PubMed  Google Scholar 

  119. Wagner, H. J. et al. Expansion of EBV latent membrane protein 2a specific cytotoxic T cells for the adoptive immunotherapy of EBV latency type 2 malignancies: influence of recombinant IL12 and IL15. Cytotherapy 5, 231–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Paludan, C. et al. Epstein–Barr nuclear antigen 1-specific CD4+ Th1 cells kill Burkitt's lymphoma cells. J. Immunol. 169, 1593–1603 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Taylor, G. S. et al. Dual stimulation of Epstein–Barr virus (EBV)-specific CD4+/− and CD8+/− T cell responses by a chimeric antigen construct: Potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J. Virol. 78, 768–778 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Frisan, T. et al. Local suppression of Epstein–Barr virus (EBV)-specific cytotoxicity in biopsies of EBV-positive Hodgkin's disease. Blood 86, 1493–1501 (1995).

    CAS  PubMed  Google Scholar 

  123. Wagner, H. J. et al. A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumour environment using tumour antigen-specific T cells. Cancer Gene Ther. 11, 81–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Baer, R. et al. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211 (1984). Sequencing of the prototype strain of EBV — at the time, this was the largest region of DNA ever sequenced and the first human virus to be fully sequenced.

    Article  CAS  PubMed  Google Scholar 

  125. Brauninger, A. et al. Epstein–Barr virus (EBV)-positive lymphoproliferations in post-transplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B cell differentiation processes. Eur. J. Immunol. 33, 1593–1602 (2003).

    Article  PubMed  CAS  Google Scholar 

  126. Brauninger, A. et al. Survival and clonal expansion of mutating 'forbidden' (immunoglobulin receptor-deficient) Epstein–Barr virus-infected B cells in angioimmunoblastic T cell lymphoma. J. Exp. Med. 194, 927–940 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pathmanathan, R., Prasad, U., Sadler, R., Flynn, K. & Raab-Traub, N. Clonal proliferations of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N. Engl. J. Med. 333, 693–698 (1995). First demonstration of clonal EBV infection in pre-malignant lesions of the nasopharynx.

    Article  CAS  PubMed  Google Scholar 

  128. Lo, K. -W. & Huang, D. P. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin. Cancer Biol. 12, 451–462 (2002). Important review summarizing the genetic and epigenetic events that contribute to the pathogenesis of NPC and indicating that some of these occur before EBV infection.

    Article  CAS  PubMed  Google Scholar 

  129. Knox, P. G., Li, Q. X., Rickinson, A. B. & Young, L. S. In vitro production of stable Epstein–Barr virus-positive epithelial cell clones which resemble the virus: cell interaction observed in nasopharyngeal carcinoma. Virology 215, 40–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Zhou, S., Fujimuro, M., Hsieh, J. J., Chen, L. & Hayward, S. D. A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J. Virol. 74, 1939–1947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Sakai, T. et al. Functional replacement of the intracellular region of the Notch1 receptor by Epstein–Barr virus nuclear antigen 2. J. Virol. 72, 6034–6039 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560 (1995).

    CAS  PubMed  Google Scholar 

  134. Eliopoulos, A. G. et al. Epstein–Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NFκB2 to p52 via an IKKγ/NEMO-independent signalling pathway. Oncogene 22, 7557–7569 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Dykstra, M. L., Longnecker, R. & Pierce, S. K. Epstein–Barr virus coopts lipid rafts to block the signalling and antigen transport functions of the BCR. Immunity 14, 57–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Ikeda, M., Ikeda, A., Longan, L. C. & Longnecker, R. The Epstein–Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268, 178–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, S. -Y., Lu, J., Shih, Y. -C. & Tsai, C. -H. Epstein–Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J. Virol. 76, 9556–9561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Young, L. S. & Murray, P. G. Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5108–5121 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose primary research papers are not cited because of the limited number of references. The authors thank D. Huang, P. Murray and G. Niedobitek for assistance with the figures and D. Williams for secretarial support. The authors' studies are supported by Cancer Research UK, the Leukaemia Research Fund and the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence S. Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

Hodgkin's lymphoma

nasopharyngeal cancer

Entrez Gene

BCR

CD21

INK4A

MYC

NF-κB

PKR

TP53

Glossary

HUMAN LEUKOCYTE ANTIGEN CLASS II MOLECULES

A subset of histocompatability antigens that are mainly expressed on cells of the immune system, including B cells, and are involved in the presentation of antigens to CD4+ T cells.

LYTIC REPLICATION

The full cycle of virus infection, leading to the production of new virus progeny and, eventually, lysis of the infected cell.

HODGKIN'S AND REED–STERNBERG CELLS

The malignant cells of Hodgkin's lymphoma, named after the pathologists who first identified them as characteristic markers of this particular tumour. In EBV-associated Hodgkin's lymphoma lesions, only these malignant cells express EBV latent-cycle antigens.

GERMINAL CENTRES

Structures in peripheral lymphoid tissues that arise through clonal proliferation of antigen-stimulated B cells (germinal centroblasts) whose immunoglobulin genes undergo somatic hypermutation. A small fraction of cells expressing immunoglobulins of higher affinity for antigen are selected as memory B cells.

INFECTIOUS MONONUCLEOSIS

A transient illness, associated with hyperactivation of the CD8+ T-cell response, that occurs in some individuals whose primary EBV infection is delayed until the second or third decade of life. Primary infection during childhood is almost always asymptomatic.

MEMORY B CELLS

B cells that have experienced antigen stimulation and, usually, somatic hypermutation and germinal-centre transit, before subsequent selection into a pool of long-lived recirculating cells. These cells rapidly respond to a later re-challenge with their specific antigen, mounting an efficient secondary antibody response.

LYMPHOCYTOSIS

A marked expansion of lymphocyte numbers in the blood, caused by proliferation of EBV-specific CD8+ T cells in the blood of patients with infectious mononucleosis.

T-CELL IMMUNOCOMPROMISED

A state of immune T-cell impairment seen, for instance, in transplant patients receiving high doses of T-cell-suppressive drugs to prevent rejection of the transplant and in late-stage AIDS patients; in both situations, immune control over persistent viral infections, such as EBV, is impaired.

SOMATIC HYPERMUTATION

Point mutations that occur in the immunoglobulin-gene variable regions (and some other genes) during B-cell differentiation.

LYMPHADENOPATHY

A marked swelling of peripheral lymphoid tissues in situations arising from chronic antigenic stimulation by an infectious agent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L., Rickinson, A. Epstein–Barr virus: 40 years on. Nat Rev Cancer 4, 757–768 (2004). https://doi.org/10.1038/nrc1452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing