Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Curing metastatic cancer: lessons from testicular germ-cell tumours

Key Points

  • Metastatic testicular germ-cell tumours (TGCTs), in contrast to nearly all other cancers in adults, can be cured with drugs (cisplatin-based combination chemotherapy). But why are metastatic TGCTs so curable?

  • TGCT cells grown in the laboratory are 2–4 times more sensitive to cisplatin than most other types of cancer cell, so they provide a representative model system with which to study the mechanisms that control cisplatin sensitivity.

  • Testis tumour cells are deficient in one particular type of DNA repair — nucleotide excision repair — and consequently have a reduced capacity to repair the DNA damage caused by cisplatin.

  • Testis tumour cells are also defective in other aspects of DNA repair and are primed for apoptosis.

  • Targeting DNA-repair proteins might sensitize other types of cancer to cisplatin.

Abstract

Most metastatic cancers are fatal. More than 80% of patients with metastatic testicular germ-cell tumours (TGCTs), however, can be cured using cisplatin-based combination chemotherapy. Why are TGCTs more sensitive to chemotherapeutics than most other tumour types? Answers to this question could lead to new treatments for metastatic cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical histogenesis of testicular germ-cell tumours.

Similar content being viewed by others

References

  1. Souhami, R. & Tobias, J. Cancer and its Management 3rd edn (Blackwell Science, Oxford, 1998).

  2. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153–156 (2001).

    Article  CAS  Google Scholar 

  3. Bosl, G. J. & Motzer, R. J. Testicular germ-cell cancer. N. Engl. J. Med. 337, 242–253 (1997). A clearly written review that summarizes most of the clinical aspects of TGCTs.

    Article  CAS  Google Scholar 

  4. Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996–2004 (1988).

    CAS  PubMed  Google Scholar 

  5. Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinoma and epithelial cancers. Lab. Invest. 70, 6–22 (1994).

    CAS  PubMed  Google Scholar 

  6. Samuels, M. L., Lanzotti, V. J., Holoye, P. Y., Boyle, L. E. & Johnson, D. E. Combination chemotherapy in germinal cell tumors. Cancer Treat. Rev. 3, 185–204 (1976).

    Article  CAS  Google Scholar 

  7. Einhorn, L. H. Curing metastatic testicular cancer. Proc. Natl Acad. Sci. USA 99, 4592–4595 (2002).

    Article  CAS  Google Scholar 

  8. Einhorn, L. H. & Donohue, J. Cis-diamminedicloroplatinum, vinblastine and bleomycin combination chemotherapy in disseminated testicular cancer. Ann. Intern. Med. 87, 293–298 (1977). The landmark clinical study that demonstrated that TGCTs are curable with cisplatin.

    Article  CAS  Google Scholar 

  9. Oosterhuis, J. W., Andrews, P. W., Knowles, B. B. & Damjanov, I. Effects of cis-platinum on embryonal carcinoma cell lines in vitro. Int. J. Cancer 34, 133–139 (1984).

    Article  CAS  Google Scholar 

  10. Walker, M. C., Parris, C. N. & Masters, J. R. W. Differential sensitivities to chemotherapeutic drugs between testicular and bladder cancer cells. J. Natl Cancer Inst. 79, 213–216 (1987).

    CAS  PubMed  Google Scholar 

  11. Pera, M. F., Friedlos, F., Mills, J. & Roberts, J. J. Inherent sensitivity of cultured human embryonal carcinoma cells to adducts of cis-diamminedichloroplatinum(II) on DNA. Cancer Res. 47, 6810–6813 (1987).

    CAS  PubMed  Google Scholar 

  12. Fry, A. M. et al. Relationship between topoisomerase II level and chemosensitivity in human tumor cell lines. Cancer Res. 51, 6592–6595 (1991).

    CAS  PubMed  Google Scholar 

  13. Parris, C. N., Arlett, C. F., Lehmann, A. R., Green, M. H. L. & Masters, J. R. W. Differential sensitivities to gamma radiation of human bladder and testicular tumour cell lines. Int. J. Radiat. Biol. 53, 599–608 (1988).

    Article  CAS  Google Scholar 

  14. Masters, J. R. Human cancer cell lines: fact and fantasy. Nature Rev. Mol. Cell Biol. 1, 233–236 (2000).

    Article  CAS  Google Scholar 

  15. Masters, J. R. HeLa cells 50 years on: the good, the bad and the ugly. Nature Rev. Cancer 2, 315–319 (2002).

    Article  CAS  Google Scholar 

  16. Olie, R. A. et al. Apoptosis of human seminoma cells upon disruption of their microenvironment. Br. J. Cancer 73, 1031–1036 (1996).

    Article  CAS  Google Scholar 

  17. Parris, C. N., Walker, M. C., Masters, J. R. W. & Arlett, C. F. Inherent sensitivity and induced resistance to chemotherapeutic drugs and irradiation in human cancer cell lines: relationship to mutation frequencies. Cancer Res. 50, 7513–7518 (1990).

    CAS  PubMed  Google Scholar 

  18. Ishida, S., Lee, J., Thiele, D. J. & Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl Acad. Sci. USA 99, 14298–14302 (2002).

    Article  CAS  Google Scholar 

  19. Sark, M. W. J. et al. Cellular basis for differential sensitivity to cisplatin in human germ cell tumour and colon carcinoma cell lines. Br. J. Cancer 71, 684–690 (1995).

    Article  CAS  Google Scholar 

  20. Masters, J. R. W. et al. Sensitivity of testis tumour cells to chemotherapeutic drugs: role of detoxifying pathways. Eur. J. Cancer 32A, 1248–1253 (1996).

    Article  CAS  Google Scholar 

  21. Meijer, C. et al. Role of metallothionein in cisplatin sensitivity of germ-cell tumours. Int. J. Cancer 85, 777–781 (2000).

    Article  CAS  Google Scholar 

  22. Walker, M. C. Inherent Sensitivity and Acquired Resistance in Human Testicular Germ Cell Tumours In Vitro. PhD Thesis, Univ. London (1990).

    Google Scholar 

  23. Köberle, B. et al. DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int. J. Cancer 70, 551–555 (1997).

    Article  Google Scholar 

  24. Burger, H., Nooter, K., Boersma, A. W. M., Kortland, C. J. & Stoter, G. Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in testicular germ cell tumour cell lines. Int. J. Cancer 73, 592–599 (1997).

    Article  CAS  Google Scholar 

  25. Richards, E. H., Hickey, E., Weber, L. & Masters, J. R. W. Effects of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res. 56, 2446–2451 (1996).

    CAS  PubMed  Google Scholar 

  26. Richards, E. H., Hickman, J. A. & Masters, J. R. W. Heat shock protein expression in testis and bladder cancer cell lines exhibiting differential sensitivity to heat. Br. J. Cancer 72, 620–626 (1995).

    Article  CAS  Google Scholar 

  27. Hettinga, J. V. E. et al. Heat-shock protein expression in cisplatin-sensitive and-resistant human tumor cells. Int. J. Cancer 67, 800–807 (1996).

    Article  CAS  Google Scholar 

  28. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  29. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  Google Scholar 

  30. Lutzker, S. G. & Levine, A. J. A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Med. 2, 804–810 (1996).

    Article  CAS  Google Scholar 

  31. Lutzker, S. G., Mathew, R. & Taller, D. R. A p53 dose-response relationship for sensitivity to DNA damage in isogenic teratocarcinoma cells. Oncogene 20, 2982–2986 (2001).

    Article  CAS  Google Scholar 

  32. Kersemaekers, A. M. F. et al. Role of p53 and MDM2 in treatment response of human germ cell tumors. J. Clin. Oncol. 20, 1551–1561 (2002). A comprehensive analysis of the role of p53 in germ-cell tumours in relation to both cisplatin sensitivity and cisplatin resistance, plus a helpful review of p53 expression and some in vitro data.

    Article  CAS  Google Scholar 

  33. Houldsworth, J. et al. Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16, 2345–2349 (1998).

    Article  CAS  Google Scholar 

  34. O'Connor, P. M. et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–4300 (1997).

    CAS  Google Scholar 

  35. Burger, A. M. et al. Distinct p53-independent apoptotic cell death signalling pathways in testicular germ cell tumour cell lines. Int. J. Cancer 81, 620–628 (1999).

    Article  CAS  Google Scholar 

  36. Brown, J. M. & Wouters, B. G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59, 1391–1399 (1999).

    CAS  PubMed  Google Scholar 

  37. Zamble, D. B., Jacks, T. & Lippard, S. J. p53-dependent and-independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proc. Natl Acad. Sci. USA 95, 6163–6168 (1998).

    Article  CAS  Google Scholar 

  38. Braun, R. E. Every sperm is sacred — or is it? Nature Genet. 18, 202–204 (1998).

    Article  CAS  Google Scholar 

  39. Chresta, C. M., Masters, J. R. W. & Hickman, J. A. Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res. 56, 1834–1841 (1996).

    CAS  PubMed  Google Scholar 

  40. Arriola, E. L., Rodriguez-Lopez, A. M., Hickman, J. A. & Chresta, C. M. Bcl-2 overexpression results in reciprocal downregulation of Bcl-XL and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene 18, 1457–1464 (1999).

    Article  CAS  Google Scholar 

  41. Mueller, T. et al. Failure of activation of caspase-9 induces a higher threshold for apoptosis and cisplatin resistance in testicular cancer. Cancer Res. 63, 513–521 (2003).

    CAS  PubMed  Google Scholar 

  42. Mayer, F. et al. Molecular determinants of treatment response in human germ cell tumors. Clin. Cancer Res. 9, 767–773 (2003).

    CAS  PubMed  Google Scholar 

  43. Fink, D. et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881–4886 (1996).

    CAS  PubMed  Google Scholar 

  44. Mello, J. A., Acharya, S., Fishel, R. & Essigmann, J. M. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol. 3, 579–589 (1996).

    Article  CAS  Google Scholar 

  45. Massey, A., Offman, J., Macpherson, P. & Karran, P. DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair 2, 73–89 (2003).

    Article  CAS  Google Scholar 

  46. Zdraveski, Z. Z., Mello, J. A., Marinus, M. G. & Essigmann, J. M. Multiple pathways of recombination define cellular responses to cisplatin. Chem. Biol. 7, 39–50 (2000).

    Article  CAS  Google Scholar 

  47. Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

    Article  CAS  Google Scholar 

  48. Vaisman, A., Masutani, C., Hanaoka, F. & Chaney, S. G. Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase η. Biochemistry 39, 4574–4580 (2000).

    Article  Google Scholar 

  49. Robertson, K. A. et al. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res. 61, 2220–2225 (2001).

    CAS  PubMed  Google Scholar 

  50. Furuta, T. et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 62, 4899–4902 (2002).

    CAS  PubMed  Google Scholar 

  51. Bedford, P., Fichtinger-Schepman, A. M., Walker, M. C., Masters, J. R. W. & Hill, B. T. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines. Cancer Res. 48, 3019–3024 (1988). The first indication that NER was defective in TGCT cells.

    CAS  PubMed  Google Scholar 

  52. Hill, B. T. et al. Deficient repair of cisplatin-DNA adducts in human testicular teratoma cell lines established from tumours from untreated patients. Eur. J. Cancer 30A, 832–837 (1994).

    Article  CAS  Google Scholar 

  53. Köberle, B., Payne, J., Grimaldi, K., Hartley, J. & Masters, J. R. W. DNA repair in cisplatin-sensitive and resistant human cell lines measured in specific genes by Q-PCR. Biochem. Pharmacol. 52, 1729–1734 (1996).

    Article  Google Scholar 

  54. Baxevanis, A. D. & Landsman, D. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res. 23, 1604–1613 (1995).

    Article  CAS  Google Scholar 

  55. Ohndorf, U. M., Rould, M. A., He, Q., Pabo, C. O. & Lippard, S. J. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399, 708–712 (1999). A key study showing the recognition of cisplatin-damaged DNA by high mobility group proteins.

    Article  CAS  Google Scholar 

  56. Huang, J. C., Zamble, D. B., Reardon, J. T., Lippard, S. J. & Sancar, A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl Acad. Sci. USA 91, 10394–10398 (1994).

    Article  CAS  Google Scholar 

  57. Zamble, D. B., Mu, D., Reardon, J. T., Sancar, A. & Lippard, S. J. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 35, 10004–10013 (1996).

    Article  CAS  Google Scholar 

  58. Ohndorf, U. M., Whitehead, J. P., Raju, N. L. & Lippard, S. J. Binding of tsHMG, a mouse testis-specific HMG-domain protein, to cisplatin-DNA adducts. Biochemistry 36, 14807–14815 (1997).

    Article  CAS  Google Scholar 

  59. Trimmer, E. E., Zamble, D. B., Lippard, S. J. & Essigmann, J. M. Human testis-determining factor SRY binds to the major adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry 37, 352–362 (1998).

    Article  CAS  Google Scholar 

  60. Zamble, D. B., Mikata, Y., Eng, C. H., Sandman, K. E. & Lippard, S. J. Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J. Inorg. Biochem. 91, 451–462 (2002).

    Article  CAS  Google Scholar 

  61. Stoop, H. et al. Reactivity of germ cell maturation stage-specific markers in spermatocytic seminoma: diagnostic and etiological implications. Lab. Invest. 81, 919–928 (2001).

    Article  CAS  Google Scholar 

  62. Köberle, B., Masters, J. R. W., Hartley, J. A. & Wood, R. D. Reduced repair of cisplatin-induced DNA damage in testicular germ cell tumours due to a specific protein defect. Curr. Biol. 9, 273–276 (1999). First unequivocal proof that NER is defective in TGCTs (earlier studies had used assays that required supralethal concentrations of cisplatin).

    Article  Google Scholar 

  63. Chew, S. L., Baginsky, L. & Eperon, I. C. An exonic splicing silencer in the testis-specific DNA ligase III beta exon. Nucleic Acids Res. 28, 402–410 (2000).

    Article  CAS  Google Scholar 

  64. Cleaver, J. E., Karplus, K., Kashani-Sabet, M. & Limoli, C. L. Nucleotide excision repair 'a legacy of creativity'. Mutat. Res. 485, 23–36 (2001).

    Article  CAS  Google Scholar 

  65. Cree, I. A., Knight, L., di Nicolantonio, F., Sharma, S. & Gulliford, T. Chemosensitization of solid tumors by modulation of resistance mechanisms. Curr. Opin. Invest. Drugs 3, 634–640 (2002).

    CAS  Google Scholar 

  66. Middleton, M. R. & Margison, G. P. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol. 4, 37–44 (2003).

    Article  CAS  Google Scholar 

  67. de Boer, J. & Hoeijmakers, J. H. J. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    Article  CAS  Google Scholar 

  68. Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer. 1, 22–33 (2001). Comprehensive review relating NER defects to cancer predisposition syndromes.

    Article  CAS  Google Scholar 

  69. Bramson, J. & Panasci, L. C. Effect of ERCC-1 overexpression on sensitivity of Chinese Hamster Ovary cells to DNA damaging agents. Cancer Res. 53, 3237–3240 (1993).

    CAS  PubMed  Google Scholar 

  70. Larminat, F. & Bohr, V. A. Role of the human ERCC-1 gene in gene-specific repair of cisplatin-induced DNA damage. Nucleic Acids Res. 22, 3005–3010 (1994).

    Article  CAS  Google Scholar 

  71. Ferry, K. V., Hamilton, T. C. & Johnson, S. W. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells. Biochem. Pharmacol. 60, 1305–1313 (2000).

    Article  CAS  Google Scholar 

  72. Cleaver, J. E., Charles, W. C., McDowell, M. L., Sadinski, W. J. & Mitchell, D. L. Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 55, 6152–6160 (1995).

    CAS  PubMed  Google Scholar 

  73. Rosenberg, E., Taher, M. M., Kuemmerle, N. B., Farnsworth, J. & Valerie, K. A truncated human xeroderma pigmentosum complementation group A protein expressed from an adenovirus sensitizes human tumor cells to ultraviolet light and cisplatin. Cancer Res. 61, 764–770 (2001).

    CAS  PubMed  Google Scholar 

  74. Reference deleted in proof.

  75. Barret, J. M., Cadou, M. & Hill, B. T. Inhibition of nucleotide excision repair and sensitization of cells to DNA cross-linking anticancer agents by F 11782, a novel fluorinated epipodophylloid. Biochem. Pharmacol. 63, 251–258 (2002). Example of a new drug that targets NER.

    Article  CAS  Google Scholar 

  76. Jiang, H. & Yang, L. Y. Cell cycle checkpoint abrogator UCN-01 inhibits DNA repair: association with attenuation of the interaction of XPA and ERCC1 nucleotide excision repair proteins. Cancer Res. 59, 4529–4534 (1999).

    CAS  PubMed  Google Scholar 

  77. Fact Sheet. Twelve major cancers. Sci. Am. 275, 92–98 (1996).

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

bladder cancer

breast cancer

colon cancer

ovarian cancer

small-cell lung cancer

stomach cancer

testicular cancer

LocusLink

AP endonuclease

ATase

BAX

BCL2

BCL-XL

caspase-9

ERCC1

HR23B

HSP27

MDM2

p53

PCNA

RFC

RPA

Trp53

XPA

XPB

XPC

XPD

XPF

XPG

XRCC1

OMIM

xeroderma pigmentosum

FURTHER INFORMATION

Cancer UK

Human DNA repair genes

National Cancer Institute

Glossary

THIOLS

Compounds that contain -SH as the principal group directly attached to carbon, such as glutathione. Glutathione is the main endogenous antioxidant produced by the cell. It participates in the neutralization of free radicals, reactive oxygen compounds, and maintains exogenous antioxidants such as vitamins C and E in their reduced (active) forms. In addition, through direct conjugation by glutathione-S-transferase, glutathione detoxifies many compounds.

CLONOGENIC ASSAY

Measures the proportion of single cells that are able to form colonies (minimum of 32 cells). It is used to estimate survival and dose response to drug treatment.

ATOMIC ABSORPTION SPECTROSCOPY

This technique uses light absorption to measure the concentration of atoms in gas phase (usually following vaporization of a solid or liquid in a furnace).

ALKALINE ELUTION

This technique measures the rate of DNA elution through a filter membrane under alkaline conditions. The amount of DNA single-strand breaks (or other lesions converted to single-strand breaks) is estimated on the basis of the increase in the rate of DNA elution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masters, J., Köberle, B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer 3, 517–525 (2003). https://doi.org/10.1038/nrc1120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing