Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling the molecular circuitry of cancer

Key Points

  • The process of malignant transformation occurs in discrete histopathological steps, many of which correlate with specific genetic alterations. Several lines of evidence implicate a limited number of molecular pathways, the disruption of which contributes to most, if not all, cancers.

  • Rodent and human experimental models of cancer have contributed to our understanding of specific cancer-associated mutations. Although these cancer models share many essential components, several important signalling pathways seem to function differently in human and rodent models of transformation.

  • Immortalization is an essential prerequisite for the formation of a tumour cell. Human cells must circumvent two barriers — replicative senescence and cellular crisis — that limit cell lifespan to achieve immortalization. These barriers are regulated by telomere shortening and by the RB and p53 tumour-suppressor pathways.

  • Ablation of the ARF–p53 pathway suffices to immortalize many mouse cells. Telomere shortening does not seem to limit the lifespan of cells that are derived from inbred mice.

  • In parallel with these differences in immortalization, pairs of introduced oncogenes will transform mouse cells, whereas the transformation of human cells requires additional introduced genes.

  • Identifying and characterizing these species-specific differences will allow the construction of human and rodent models of cancer that increasingly phenocopy human cancer. Such models will revolutionize the screening and testing of candidate chemical and biological anticancer therapies.

Abstract

Cancer arises from a stepwise accumulation of genetic changes that liberates neoplastic cells from the homeostatic mechanisms that govern normal cell proliferation. In humans, at least four to six mutations are required to reach this state, but fewer seem to be required in mice. By rationalizing the shared and unique elements of human and mouse models of cancer, we should be able to identify the molecular circuits that function differently in humans and mice, and use this knowledge to improve existing models of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CDKN2A locus and proliferation control in human and mouse cells.
Figure 2: The molecular circuitry of cancer.

Similar content being viewed by others

References

  1. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Yeang, C. H. et al. Molecular classification of multiple tumor types. Bioinformatics 17 (Suppl. 1), S316–S322 (2001).

    PubMed  Google Scholar 

  3. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  7. Li, R. et al. Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells. Proc. Natl Acad. Sci. USA 94, 14506–14511 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  9. Gross, L. Oncogenic Viruses (Pergamon, UK, Oxford, 1970).

    Google Scholar 

  10. Bishop, J. M. Viral oncogenes. Cell 42, 23–38 (1985).

    CAS  PubMed  Google Scholar 

  11. Shih, C., Padhy, L. C., Murray, M. & Weinberg, R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261–264 (1981).

    CAS  PubMed  Google Scholar 

  12. Krontiris, T. G. & Cooper, G. M. Transforming activity of human tumor DNAs. Proc. Natl Acad. Sci. USA 78, 1181–1184 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Perucho, M. et al. Human-tumor-derived cell lines contain common and different transforming genes. Cell 27, 467–476 (1981).

    CAS  PubMed  Google Scholar 

  14. Pulciani, S. et al. Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc. Natl Acad. Sci. USA 79, 2845–2849 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl Acad. Sci. USA 76, 5714–5718 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Balmain, A. & Pragnell, I. B. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303, 72–74 (1983).

    CAS  PubMed  Google Scholar 

  17. Sukumar, S., Notario, V., Martin-Zanca, D. & Barbacid, M. Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306, 658–661 (1983).

    CAS  PubMed  Google Scholar 

  18. Eva, A. & Aaronson, S. A. Frequent activation of c-Kis as a transforming gene in fibrosarcomas induced by methylcholanthrene. Science 220, 955–956 (1983).

    CAS  PubMed  Google Scholar 

  19. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    CAS  PubMed  Google Scholar 

  20. Ruley, H. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    CAS  PubMed  Google Scholar 

  21. Beug, H., Kahn, P., Doederlein, G., Hayman, M. J. & Graf, T. Characterization of hematopoietic cells transformed in vitro by AEV-H, a v-erbB-containing avian erythroblastosis virus. Hamatol. Bluttransfus. 29, 290–297 (1985).

    CAS  Google Scholar 

  22. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-Myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    CAS  PubMed  Google Scholar 

  23. Thompson, T. C., Southgate, J., Kitchener, G. & Land, H. Multistage carcinogenesis induced by Ras and Myc oncogenes in a reconstituted organ. Cell 56, 917–930 (1989).

    CAS  PubMed  Google Scholar 

  24. Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog 7, 139–146 (1993).

    CAS  PubMed  Google Scholar 

  25. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  26. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  27. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93, 59–62 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McCormick, J. J. et al. Malignant transformation of human fibroblasts by oncogene transfection or carcinogen treatment. Prog. Clin. Biol. Res. 340D, 195–205 (1990).

    CAS  PubMed  Google Scholar 

  29. Kang, J.-S. et al. Involvement of tyrosine phosphorylation of p185c-Erb/neu in tumorigenicity induced by X-rays and the Neu oncogene in human breast epithelial cells. Mol. Carcinogenesis 21, 225–233 (1998).

    CAS  Google Scholar 

  30. Harley, C. B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 307–315 (1994).

    CAS  PubMed  Google Scholar 

  31. Hahn, W. C. & Meyerson, M. Telomerase activation, cellular immortalization and cancer. Ann. Med. 33, 123–129 (2001).

    CAS  PubMed  Google Scholar 

  32. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    CAS  PubMed  Google Scholar 

  33. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    CAS  PubMed  Google Scholar 

  34. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    CAS  PubMed  Google Scholar 

  35. Harrington, L. et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hahn, W. C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999).The first demonstration that human cells can be directly transformed with introduced genes ( TERT , SV40 early region and an oncogenic HRAS mutant).

    CAS  PubMed  Google Scholar 

  37. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rich, J. N. et al. A genetically tractable model of human glioma formation. Cancer Res. 61, 3556–3560 (2001).

    CAS  PubMed  Google Scholar 

  39. Sager, R., Tanaka, K., Cau, C. C., Ebina, Y. & Anisowicz, A. Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc. Natl Acad. Sci. USA 80, 7601–7605 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med. 6, 849–851 (2000).

    CAS  PubMed  Google Scholar 

  41. Newbold, R. F. & Overell, R. W. Fibroblast immortality is a prerequisite for transformation by EJ c-HA-ras oncogene. Nature 304, 648–651 (1983).

    CAS  PubMed  Google Scholar 

  42. Greider, C. W. & Blackburn, E. H. Telomeres, telomerase and cancer. Sci. Am. 274, 92–97 (1996).

    CAS  PubMed  Google Scholar 

  43. Blackburn, E. H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    CAS  PubMed  Google Scholar 

  44. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  PubMed  Google Scholar 

  45. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Counter, C. M., Hirte, H. W., Bacchetti, S. & Harley, C. B. Telomerase activity in human ovarian carcinoma. Proc. Natl Acad. Sci. USA 91, 2900–2904 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  Google Scholar 

  49. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    CAS  PubMed  Google Scholar 

  50. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  PubMed  Google Scholar 

  51. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).References 50 and 51 show that introduction of TERT into mortal telomerase-null normal human cells confers telomerase activity and direct immortalization.

    CAS  PubMed  Google Scholar 

  52. Dickson, M. A. et al. Human keratinocytes that express hTERT and also evade a p16INK4A-enforced lifespan limit become immortal while retaining normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiyono, T. et al. Both Rb/p16INK4A inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).Using normal human mammary epithelial cells and keratinocytes, these authors showed that some human cells require alterations in addition to telomerase activation to achieve immortalization.

    CAS  PubMed  Google Scholar 

  54. Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).Specific conditions of cell culture affect human cell proliferation by inducing INK4A expression, indicating that telomere-independent signals that lead to growth arrest might not reflect replicative ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990).

    CAS  PubMed  Google Scholar 

  57. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).Using MEFs derived from knockout mice that lack functional telomerase, the authors show that cell proliferation and transformation is not limited by shortened telomeres, even in sixth-generation mice that harbour short telomeres.

    CAS  PubMed  Google Scholar 

  58. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    CAS  PubMed  Google Scholar 

  59. Sherr, C. J. The INK4A/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    CAS  Google Scholar 

  60. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    CAS  PubMed  Google Scholar 

  61. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4A tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    CAS  PubMed  Google Scholar 

  62. Sellers, W. R. & Kaelin, W. G. Role of the retinoblastoma protein in the pathogenesis of human cancer. J. Clin. Oncol. 15, 3301–3312 (1997).

    CAS  PubMed  Google Scholar 

  63. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    CAS  PubMed  Google Scholar 

  64. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Harvey, D. M. & Levine, A. J. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 5, 2375–2385 (1991).

    CAS  PubMed  Google Scholar 

  66. Kamijo, T. et al. Tumor suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).Elimination of Arf without disrupting Ink4a in the mouse genome recapitulates most of the phenotypes of the Ink4a knockout mouse, indicating that Arf is important in tumour suppression.

    CAS  PubMed  Google Scholar 

  67. Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol. 2, 148–155 (2000).

    CAS  PubMed  Google Scholar 

  68. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic Ras provokes premature cell senescence associated with accumulation of p53 and p16Ink4a. Cell 88, 593–602 (1997).High-level expression of mutated HRAS induces a premature growth arrest in both human and mouse cells. This arrest is bypassed by elimination of p53 function alone in mouse cells, but requires disruption of both the RB and p53 pathways in human cells.

    CAS  PubMed  Google Scholar 

  69. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4A tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).

    CAS  PubMed  Google Scholar 

  70. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    CAS  PubMed  Google Scholar 

  71. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).References 70 and 71 confirm that loss of Arf, not Ink4a, is responsible for most of the proliferative and tumour phenotypes that are observed in Ink4a-null cells. These studies also show that Ink4a is involved in predisposing mice to melanoma.

    CAS  PubMed  Google Scholar 

  72. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  73. Wei, W., Hemmer, R. M. & Sedivy, J. M. Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol. Cell Biol. 21, 6748–6757 (2001).Although ectopic expression of ARF induces a growth arrest in human cells, the extended culture of, or introduction of, high levels of HRAS into normal human fibroblasts does not lead to induction of ARF.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shay, J. W. & Wright, W. E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp. Cell Res. 184, 109–118 (1989).

    CAS  PubMed  Google Scholar 

  75. Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    CAS  PubMed  Google Scholar 

  76. Bond, J. A. et al. Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol. Cell. Biol. 19, 3103–3114 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bond, J. A. et al. Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Cancer Res. 55, 2404–2409 (1995).

    CAS  PubMed  Google Scholar 

  78. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    CAS  PubMed  Google Scholar 

  79. Thompson, D. L., Kalderon, D., Smith, A. E. & Tevethia, M. J. Dissociation of Rb-binding and anchorage-independent growth from immortalization and tumorigenicity using SV40 mutants producing N-terminally truncated large T antigens. Virology 178, 15–34 (1990).

    CAS  PubMed  Google Scholar 

  80. Stubdal, H. et al. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol. Cell. Biol. 17, 4979–4990 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, J., Rice, P. W., Gorsch, L., Abate, M. & Cole, C. N. Transformation of a continuous rat embryo fibroblast cell line requires three separate domains of simian virus 40 large T antigen. J. Virol. 66, 2780–2791 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Reznikoff, C. A. et al. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res. 56, 2886–2890 (1996).

    CAS  PubMed  Google Scholar 

  83. DiRenzo, J. et al. Growth factor requirements and basal phenotype of an immortalized mammary epithelial cell line. Cancer Res. 62, 89–98 (2002).

    CAS  PubMed  Google Scholar 

  84. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    CAS  PubMed  Google Scholar 

  85. Romanov, S. R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    CAS  PubMed  Google Scholar 

  86. Tang, D. G., Tokumoto, Y. M., Apperly, J. A., Lloyd, A. C. & Raff, M. C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871 (2001).

    CAS  PubMed  Google Scholar 

  87. Mathon, N. F., Malcolm, D. S., Harrisingh, M. C., Cheng, L. & Lloyd, A. C. Lack of replicative senescence in normal rodent glia. Science 291, 872–875 (2001).

    CAS  PubMed  Google Scholar 

  88. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    CAS  PubMed  Google Scholar 

  89. Randle, D. H., Zindy, F., Sherr, C. J. & Roussel, M. F. Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages. Proc. Natl Acad. Sci. USA 98, 9654–9659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weinberg, R. A. The cat and mouse games that genes, viruses, and cells play. Cell 88, 573–575 (1997).

    CAS  PubMed  Google Scholar 

  91. Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 3, 198–203 (2001).

    CAS  PubMed  Google Scholar 

  92. Frame, S. & Balmain, A. Integration of positive and negative growth signals during Ras pathway activation in vivo. Curr. Opin. Genet. Dev. 10, 106–113 (2000).

    CAS  PubMed  Google Scholar 

  93. Filmus, J. et al. Induction of cyclin D1 overexpression by activated Ras. Oncogene 9, 3627–3633 (1994).

    CAS  PubMed  Google Scholar 

  94. Mittnacht, S., Paterson, H., Olson, M. F. & Marshall, C. J. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr. Biol. 7, 219–221 (1997).

    CAS  PubMed  Google Scholar 

  95. Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181 (1997).

    CAS  PubMed  Google Scholar 

  96. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Glick, A. et al. Defects in transforming growth factor-β signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc. Natl Acad. Sci. USA 96, 14949–14954 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Metz, T., Harris, A. W. & Adams, J. M. Absence of p53 allows direct immortalization of hematopoietic cells by the Myc and Raf oncogenes. Cell 82, 29–36 (1995).

    CAS  PubMed  Google Scholar 

  99. Lin, A. W. & Lowe, S. W. Oncogenic Ras activates the ARF–p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA 98, 5025–5030 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Stevenson, M. & Volsky, D. J. Activated v-Myc and v-Ras oncogenes do not transform normal human lymphocytes. Mol. Cell. Biol. 6, 3410–3417 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hahn, W. C. et al. Enumeration of SV40 elements necessary for human cell transformation. Mol. Cell. Biol. 32, 2111–2123 (2002).

    Google Scholar 

  102. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, K. J. et al. Direct activation of TERT transcription by c-Myc. Nature Genet. 21, 220–224 (1999).

    CAS  PubMed  Google Scholar 

  104. Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 (1999).

    CAS  PubMed  Google Scholar 

  105. Pallas, D. C. et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167–176 (1990).

    CAS  PubMed  Google Scholar 

  106. Yang, S. I. et al. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol. Cell. Biol. 11, 1988–1995 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sleigh, M. J., Topp, W. C., Hanich, R. & Sambrook, J. F. Mutants of SV40 with an altered small T protein are reduced in their ability to transform cells. Cell 14, 79–88 (1978).

    CAS  PubMed  Google Scholar 

  108. Rubin, H. et al. Role of small T antigen in the acute transforming activity of SV40. Cell 30, 469–480 (1982).

    CAS  PubMed  Google Scholar 

  109. de Ronde, A., Sol, C. J., van Strien, A., ter Schegget, J. & van der Noordaa, J. The SV40 small T antigen is essential for the morphological transformation of human fibroblasts. Virology 171, 260–263 (1989).

    CAS  PubMed  Google Scholar 

  110. Morales, C. P. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet. 21, 115–118 (1999).

    CAS  PubMed  Google Scholar 

  111. Yu, J., Boyapati, A. & Rundell, K. Critical role for SV40 small-t antigen in human cell transformation. Virology 290, 192–198 (2001).

    CAS  PubMed  Google Scholar 

  112. Sontag, E. et al. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the MAP kinase pathway and induces cell proliferation. Cell 75, 887–897 (1993).

    CAS  PubMed  Google Scholar 

  113. Millward, T. A., Zolnierowicz, S. & Hemmings, B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191 (1999).

    CAS  PubMed  Google Scholar 

  114. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, M. H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    CAS  PubMed  Google Scholar 

  116. Cichowski, K. et al. Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172–2176 (1999).

    CAS  PubMed  Google Scholar 

  117. Johnson, L. et al. Somatic activation of the Kras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    CAS  PubMed  Google Scholar 

  118. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 461–465 (2000).Mice that lack functional telomerase, as well as heterozygosity at the Trp53 locus, have chromosomal abnormalities similar to those seen in human epithelial cancers.

    Google Scholar 

  119. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    CAS  PubMed  Google Scholar 

  120. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    CAS  PubMed  Google Scholar 

  121. Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    CAS  PubMed  Google Scholar 

  122. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    CAS  PubMed  Google Scholar 

  123. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nature Genet. 17, 236–239 (1997).

    CAS  PubMed  Google Scholar 

  124. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct MYB-related proteins, TRF1 and TRF2. Nature Genet. 17, 231–235 (1997).

    CAS  PubMed  Google Scholar 

  125. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    CAS  PubMed  Google Scholar 

  126. Sedivy, J. M. Can the ends justify the means?: Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc. Natl Acad. Sci. USA 95, 9078–9081 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Stewart, N. & Bacchetti, S. Expression of SV40 large T antigen, but not small T antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180, 49–57 (1991).

    CAS  PubMed  Google Scholar 

  128. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  PubMed  Google Scholar 

  129. Yang, J. et al. Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141–26148 (1999).

    CAS  PubMed  Google Scholar 

  130. Counter, C. M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Halvorsen, T. L., Leibowitz, G. & Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864–1870 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu, J., Wang, H., Bishop, J. M. & Blackburn, E. H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl Acad. Sci. USA 96, 3723–3728 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    CAS  PubMed  Google Scholar 

  134. Ali, S. H. & DeCaprio, J. A. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin. Cancer Biol. 11, 15–23 (2001).

    CAS  PubMed  Google Scholar 

  135. Rundell, K. & Parakati, R. The role of the SV40 ST antigen in cell growth promotion and transformation. Semin. Cancer Biol. 11, 5–13 (2001).

    CAS  PubMed  Google Scholar 

  136. Clarke, A. R. et al. Requirement for a functional Rb1 gene in murine development. Nature 359, 328–330 (1992).

    CAS  PubMed  Google Scholar 

  137. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  PubMed  Google Scholar 

  138. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  139. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  140. Serrano, M. et al. Role of the INK4A locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS  PubMed  Google Scholar 

  141. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    CAS  PubMed  Google Scholar 

  142. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    CAS  PubMed  Google Scholar 

  144. Gowen, L. C., Johnson, B. L., Latour, A. M., Sulik, K. K. & Koller, B. H. Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genet. 12, 191–194 (1996).

    CAS  PubMed  Google Scholar 

  145. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    CAS  PubMed  Google Scholar 

  146. Ludwig, T., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226–1241 (1997).

    CAS  PubMed  Google Scholar 

  147. Suzuki, A. et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242–1252 (1997).

    CAS  PubMed  Google Scholar 

  148. Brannan, C. I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    CAS  PubMed  Google Scholar 

  149. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genet. 7, 353–361 (1994).

    CAS  PubMed  Google Scholar 

  150. McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 12, 1121–1133 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Marcus, D. M. et al. Retinal pigment epithelium abnormalities in mice with adenomatous polyposis coli gene disruption. Arch. Ophthalmol. 115, 645–650 (1997).

    CAS  PubMed  Google Scholar 

  152. Yang, K. et al. A mouse model of human familial adenomatous polyposis. J. Exp. Zool. 277, 245–254 (1997).

    CAS  PubMed  Google Scholar 

  153. Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA 91, 8969–8973 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    CAS  PubMed  Google Scholar 

  155. Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc. Natl Acad. Sci. USA 98, 1583–1588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. DePinho, R. A. & Jacks, T. Introduction. The laboratory mouse in cancer research. Semin. Cancer Biol. 11, 175–176 (2001).

    CAS  PubMed  Google Scholar 

  157. Hakem, R. & Mak, T. W. Animal models of tumor-suppressor genes. Annu. Rev. Genet. 35, 209–241 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

colon carcinoma

melanoma

GenBank

E1A

E6

E7

v-erbA

v-erbB

LT

LocusLink

CDK4

CDK6

Cdkn2a

CDKN2A

cyclin D1

D-type cyclins

HRAS

Kras2

MDM2

Myc

Nf1

p53

p107

p130

PP2A

Raf

Ras

RB

telomerase

Terc

TERC

TERT

TRF1

TRF2

Trp53

FURTHER INFORMATION

Hahn's lab

Weinberg's lab

Glossary

HYPERPLASIA

An increase in the number of cells in a tissue or organ without gross morphological changes.

DYSPLASIA

The disordered growth that is characterized by changes in size, shape or differentiation programmes of cells in a tissue, often leading to architectural changes to the tissue or organ and generally representing a premalignant state.

ADENOMA

An ordinarily benign neoplasm of epithelial tissue in which the tumour cells form glands or gland-like structures.

CARCINOMA

A malignant neoplasm of epithelial cells that is characterized by dysplasia, hyperplasia and invasion of surrounding tissues.

REPLICATIVE SENESCENCE

Normal human cells that are propagated serially in culture eventually reach a growth arrest that is characterized by a flattened cell morphology and continued metabolic activity without widespread cell death.

SV40 LARGE T ANTIGEN

(LT). A multifunctional protein product of the simian virus 40 early region that is necessary to establish a permissive host-cell environment for viral replication by interactions with host proteins. Large T antigen binds and functionally inactivates both the RB and p53 tumour-suppressor proteins.

HUMAN PAPILLOMAVIRUS E6 AND E7

Viral oncoproteins that are derived from certain human papillomavirus types that are associated with increased risk of cervical cancer. E6 binds to and targets p53 for ubiquitin-mediated degradation. E7 binds and inactivates RB.

ANEUPLOIDY

The state of having an abnormal number of chromosomes. Most human epithelial cancers harbour genomes that are characterized by gross aneuploidy.

PHENOCOPY

A model that recapitulates the clinical and biological characteristics of a specific disease state.

NON-RECIPROCAL TRANSLOCATION

Transposition of two segments between non-homologous chromosomes with loss or gain of genetic material as the result of abnormal breakage and fusion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, W., Weinberg, R. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2, 331–341 (2002). https://doi.org/10.1038/nrc795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing