Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A chemical probe toolbox for dissecting the cancer epigenome

A Corrigendum to this article was published on 23 March 2017

This article has been updated

Key Points

  • Recurrent somatic mutations of genes encoding chromatin modifiers are among the most prevalent genetic events in cancer.

  • Broad epigenetic dysregulation is now understood to be a major enabling characteristic of tumour cells.

  • Validated chemical probes enable specific dissection of the molecular processes regulating gene expression at the chromatin interface.

  • By combining informative chemical probes with genetic experiments the cancer epigenome can be interrogated to identify new druggable vulnerabilities.

  • Emerging epigenetic therapies targeting DNA methylation, post-translational histone modifications and bromodomain-containing reader proteins are rapidly progressing through clinical trials and in some cases have proven efficacy in chemorefractory tumours.

  • Preclinical mechanistic data derived from chemical probes provide an important tool for deploying new epigenetically targeted drugs in rational combinations with existing therapeutics while enriching for patient disease groups who are most likely to benefit.

Abstract

Cancer cell hallmarks are underpinned by transcriptional programmes operating in the context of a dynamic and complicit epigenomic environment. Somatic alterations of chromatin modifiers are among the most prevalent cancer perturbations. There is a pressing need for targeted chemical probes to dissect these complex, interconnected gene regulatory circuits. Validated chemical probes empower mechanistic research while providing the pharmacological proof of concept that is required to translate drug-like derivatives into therapy for cancer patients. In this Review, we describe chemical probe development for epigenomic effector proteins that are linked to cancer pathogenesis. By annotating these reagents, we aim to share our perspectives on an informative 'epigenomic toolbox' of broad utility to the research community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanism of histone methylation.
Figure 2: The mechanism of histone acetylation.
Figure 3: The chemical phylogeny of metal-dependent HDAC inhibitors.
Figure 4: Bromodomain protein phylogeny and BET-selective chemical probes.

Similar content being viewed by others

Change history

  • 10 March 2017

    Supplementary information S1-S6 (tables) for this article have been replaced, with several minor errors in the tables and references corrected.

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Patel, M. N., Halling-Brown, M. D., Tym, J. E., Workman, P. & Al-Lazikani, B. Objective assessment of cancer genes for drug discovery. Nat. Rev. Drug Discov. 12, 35–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Patel, J. P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, J. et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Simon, J. A. & Lange, C. A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Berg, T. Inhibition of transcription factors with small organic molecules. Curr. Opin. Chem. Biol. 12, 464–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Darnell, J. E. Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331–340 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). The first description of the activity of chemical probes conjugated to phthalimide to redirect the ubiquitin ligase activity of cereblon towards specific molecular targets.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Frye, S. V. The art of the chemical probe. Nat. Chem. Biol. 6, 159–161 (2010). A seminal commentary delineating important criteria for chemical probe evaluation and use.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka, M., Roberts, J. M., Qi, J. & Bradner, J. E. Inhibitors of emerging epigenetic targets for cancer therapy: a patent review (2010–2014). Pharm. Pat. Anal. 4, 261–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Copeland, R. A., Solomon, M. E. & Richon, V. M. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 8, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, B. C. & Denu, J. M. Chemical mechanisms of histone lysine and arginine modifications. Biochim. Biophys. Acta 1789, 45–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem. Biol. 7, 443–463 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Vedel, M., Lawrence, F., Robert-Gero, M. & Lederer, E. The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus. Biochem. Biophys. Res. Commun. 85, 371–376 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. 1, 143–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Cherblanc, F. L., Chapman, K. L., Brown, R. & Fuchter, M. J. Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat. Chem. Biol. 9, 136–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Bartel, R. L. & Borchardt, R. T. Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S-adenosylmethionine-dependent transmethylations in mouse L929 cells. Mol. Pharmacol. 25, 418–424 (1984).

    CAS  PubMed  Google Scholar 

  33. Jarvi, E. T. et al. 4′,5′-unsaturated 5′-halogenated nucleosides. Mechanism-based and competitive inhibitors of S-adenosyl-l-homocysteine hydrolase. J. Med. Chem. 34, 647–656 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Clarke, S. G. in The Enzymes: Protein Methyltransferases Vol. 24 (eds Clarke, S. G. & Tamanoi, F.) 467–493 (Elsevier, 2006).

    Book  Google Scholar 

  35. Miranda, T. B. et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8, 1579–1588 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Paller, A. S., Arnsmeier, S. L., Clark, S. H. & Mirkin, B. L. Z-4′,5′-didehydro-5′-deoxy-5′-fluoroadenosine (MDL 28,842), an irreversible inhibitor of S-adenosylhomocysteine hydrolase, suppresses proliferation of cultured keratinocytes and squamous carcinoma cell lines. Cancer Res. 53, 6058–6060 (1993).

    CAS  PubMed  Google Scholar 

  37. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. McGarvey, K. M. et al. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res. 66, 3541–3549 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kondo, Y. et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 3, e2037 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ding, J. et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18, 896–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Chang, Y. et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16, 312–317 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu, F. et al. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J. Med. Chem. 52, 7950–7953 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu, F. et al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem. 53, 5844–5857 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, F. et al. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem. 54, 6139–6150 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vedadi, M. et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol. 7, 566–574 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu, F. et al. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J. Med. Chem. 56, 8931–8942 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Lehnertz, B. et al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev. 28, 317–327 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen, X. et al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev. 26, 2499–2511 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sweis, R. F. et al. Discovery and development of potent and selective inhibitors of histone methyltransferase G9a. ACS Med. Chem. Lett. 5, 205–209 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pappano, W. N. et al. The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia. PLoS ONE 10, e0131716 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yuan, Y. et al. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem. Biol. 7, 1152–1157 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rau, R. E. et al. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood 128, 971–981 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Min, J., Feng, Q., Li, Z., Zhang, Y. & Xu, R. M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Richon, V. M. et al. Chemogenetic analysis of human protein methyltransferases. Chem. Biol. Drug Des. 78, 199–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011). A study reporting EPZ004777, the first small-molecule inhibitor of the DOT1L methyltransferase.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yu, W. et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat. Commun. 3, 1288 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Basavapathruni, A. et al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem. Biol. Drug Des. 80, 971–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yao, Y. et al. Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J. Am. Chem. Soc. 133, 16746–16749 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yu, W. et al. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorg. Med. Chem. 21, 1787–1794 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Deng, L. et al. Synthesis, activity and metabolic stability of non-ribose containing inhibitors of histone methyltransferase DOT1L. MedChemComm. 4, 822–826 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Yi, J. S. et al. Structure-guided DOT1L probe optimization by label-free ligand displacement. ACS Chem. Biol. 10, 667–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Karatas, H. et al. High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein–protein interaction. J. Am. Chem. Soc. 135, 669–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Cao, F. et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53, 247–261 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Grembecka, J. et al. Menin−MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012). A study describing MI-2 and MI-3, the first reported inhibitors of the MLL–menin protein interaction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. He, S. et al. High-affinity small-molecule inhibitors of the menin−mixed lineage leukemia (MLL) interaction closely mimic a natural protein–protein interaction. J. Med. Chem. 57, 1543–1556 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl Acad. Sci. USA 109, 21360–21365 (2012). References 70–72 are the first reports of small-molecule inhibition of the EZH2 methyltransferase and establish a rationale for therapeutic development in lymphoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Riising, E. M. et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Garapaty-Rao, S. et al. Identification of EZH2 and EZH1 small molecule inhibitors with selective impact on diffuse large B cell lymphoma cell growth. Chem. Biol. 20, 1329–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Nasveschuk, C. G. et al. Discovery and optimization of tetramethylpiperidinyl benzamides as inhibitors of EZH2. ACS Med. Chem. Lett. 5, 378–383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Konze, K. D. et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem. Biol. 8, 1324–1334 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verma, S. K. et al. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med. Chem. Lett. 3, 1091–1096 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Knutson, S. K. et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol. Cancer Ther. 13, 842–854 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Alimova, I. et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 15, 149–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Shi, J. et al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 32, 930–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Neff, T. et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc. Natl Acad. Sci. USA 109, 5028–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, B., Konze, K. D., Jin, J. & Wang, G. G. Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp. Hematol. 43, 698–712 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350, aac4383 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. McBride, A. E. & Silver, P. A. State of the arg: protein methylation at arginine comes of age. Cell 106, 5–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, Y. & Bedford, M. T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Tarighat, S. S. et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30, 789–799 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Chung, J. et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J. Biol. Chem. 288, 35534–35547 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Alinari, L. et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 125, 2530–2543 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015). References 97 and 98 report the first selective inhibitors of PRMT5 and demonstrate their efficacy in B cell malignancies.

    CAS  PubMed  Google Scholar 

  99. Mitchell, L. H. et al. Aryl pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. ACS Med. Chem. Lett. 6, 655–659 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kaniskan, H. Ü. et al. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew. Chem. Int. Ed. 54, 5166–5170 (2015).

  101. Eram, M. S. et al. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol. 11, 772–781 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Amente, S., Lania, L. & Majello, B. The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim. Biophys. Acta 1829, 981–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, Z. Q. et al. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 60, 4735–4739 (2000).

    CAS  PubMed  Google Scholar 

  106. Hu, Z. et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 20, 6946–6954 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, M. G., Wynder, C., Schmidt, D. M., McCafferty, D. G. & Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Schmidt, D. M. & McCafferty, D. G. trans-2-phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 46, 4408–4416 (2007). The first study to demonstrate that MAO inhibitors can act as potent inhibitors of the LSD1 HDM.

    Article  CAS  PubMed  Google Scholar 

  111. Yang, M. et al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry 46, 8058–8065 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Ueda, R. et al. Identification of cell-active lysine specific demethylase 1-selective inhibitors. J. Am. Chem. Soc. 131, 17536–17537 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Binda, C. et al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J. Am. Chem. Soc. 132, 6827–6833 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Mimasu, S. et al. Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry 49, 6494–6503 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Liang, Y. et al. A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. mBio 4, e00558–12 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Mould, D. P., McGonagle, A. E., Wiseman, D. H., Williams, E. L. & Jordan, A. M. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Med. Res. Rev. 35, 586–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Mohammad, H. et al. Novel anti-tumor activity of targeted LSD1 inhibition by GSK2879552. Eur. J. Cancer 50, 72 (2014).

    Article  Google Scholar 

  121. Smith, E. H., Janknecht, R. & Maher, L. J. III. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum. Mol. Genet. 16, 3136–3148 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Rose, N. R. et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J. Med. Chem. 51, 7053–7056 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rose, N. R. et al. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J. Med. Chem. 53, 1810–1818 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sekirnik, R. et al. Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(II). Chem. Commun. (Camb.) 42, 6376–6378 (2009).

    Article  CAS  Google Scholar 

  125. Culhane, J. C. et al. A mechanism-based inactivator for histone demethylase LSD1. J. Am. Chem. Soc. 128, 4536–4537 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Hamada, S. et al. Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg. Med. Chem. Lett. 19, 2852–2855 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. King, O. N. et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS ONE 5, e15535 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Thalhammer, A. et al. Inhibition of the histone demethylase JMJD2E by 3-substituted pyridine 2,4-dicarboxylates. Org. Biomol. Chem. 9, 127–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Luo, X. et al. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J. Am. Chem. Soc. 133, 9451–9456 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hashizume, R. et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 20, 1394–1396 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. Nature 514, E1–E2 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. James, L. I. et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat. Chem. Biol. 9, 184–191 (2013). A study describing UNC1215, the first validated chemical probe for a methyllysine reader domain.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. James, L. I. et al. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J. Med. Chem. 56, 7358–7371 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Milosevich, N. et al. Selective inhibition of CBX6: a methyllysine reader protein in the Polycomb family. ACS Med. Chem. Lett. 7, 139–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Stuckey, J. I. et al. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat. Chem. Biol. 12, 180–187 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  PubMed  CAS  Google Scholar 

  141. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Sun, X. J., Man, N., Tan, Y., Nimer, S. D. & Wang, L. The role of histone acetyltransferases in normal and malignant hematopoiesis. Front. Oncol. 5, 108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bowers, E. M. et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17, 471–482 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality via apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 6, 430–445 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, L. et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333, 765–769 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Arif, M. et al. Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem. Biol. 17, 903–913 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, H. et al. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents. Mol. Cancer Ther. 12, 610–620 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Ravindra, K. C. et al. Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J. Biol. Chem. 284, 24453–24464 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Modak, R. et al. Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor. ACS Chem. Biol. 8, 1311–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Shirakawa, K. et al. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity. eLife 5, e11156 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Liu, X. et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Delvecchio, M., Gaucher, J., Aguilar-Gurrieri, C., Ortega, E. & Panne, D. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat. Struct. Mol. Biol. 20, 1040–1046 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Sternson, S. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett. 3, 4239–4242 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Bradner, J. E. et al. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 6, 238–243 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011). An important study detailing the selectivity of 16 distinct HDACis in the context of targeting HDAC complexes rather than purified catalytic subunits.

    Article  CAS  PubMed  Google Scholar 

  158. Wong, J. C., Hong, R. & Schreiber, S. L. Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc. 125, 5586–5587 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Kwon, H. J., Owa, T., Hassig, C. A., Shimada, J. & Schreiber, S. L. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl Acad. Sci. USA 95, 3356–3361 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hassig, C. A. et al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther. 7, 1054–1065 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Huang, H. L. et al. Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo. PLoS ONE 7, e43645 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Tsuji, N., Kobayashi, M., Nagashima, K., Wakisaka, Y. & Koizumi, K. A new antifungal antibiotic, trichostatin. J. Antibiot. 29, 1–6 (1976).

    Article  CAS  Google Scholar 

  163. Sugita, K., Koizumi, K. & Yoshida, H. Morphological reversion of sis-transformed NIH3T3 cells by trichostatin A. Cancer Res. 52, 168–172 (1992).

    CAS  PubMed  Google Scholar 

  164. Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007). A pivotal clinical trial documenting the efficacy and tolerability of SAHA in cutaneous T cell lymphoma.

    Article  CAS  PubMed  Google Scholar 

  166. Matthews, G. M. et al. Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies. Blood 126, 2392–2403 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Minami, J. et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia 28, 680–689 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Wells, C. E. et al. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PLoS ONE 8, e68915 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Riggs, M. G., Whittaker, R. G., Neumann, J. R. & Ingram, V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268, 462–464 (1977).

    Article  CAS  PubMed  Google Scholar 

  171. Candelaria, M. et al. Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann. Hematol. 90, 379–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Coiffier, B. et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 30, 631–636 (2012). An important clinical trial reporting the activity of romidepsin in peripheral T cell lymphoma.

    Article  CAS  PubMed  Google Scholar 

  173. Furumai, R. et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62, 4916–4921 (2002).

    CAS  PubMed  Google Scholar 

  174. Whittaker, S. J. et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. El-Beltagi, H. M., Martens, A. C. M., Lelieveld, P., Haroun, E. A. & Hagenbeek, A. Acetyldinaline: a new oral cytostatic drug with impressive differential activity against leukemic cells and normal stem cells — preclinical studies in a relevant rat model for human acute myelocytic leukemia. Cancer Res. 53, 3008–3014 (1993).

    CAS  PubMed  Google Scholar 

  176. Saito, A. et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl Acad. Sci. USA 96, 4592–4597 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Paquin, I. et al. Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 18, 1067–1071 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Chou, C. J., Herman, D. & Gottesfeld, J. M. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J. Biol. Chem. 283, 35402–35409 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Methot, J. L. et al. Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett. 18, 973–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Jayathilaka, N. et al. Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Nucleic Acids Res. 40, 5378–5388 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ontoria, J. M. et al. Identification of novel, selective, and stable inhibitors of class II histone deacetylases. Validation studies of the enzymatic activity of HDAC4 by small molecules as a novel approach for cancer therapy. J. Med. Chem. 52, 6782–6783 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a non-chelating zinc-binding group. Nat. Chem. Biol. 9, 319–325 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Mai, A. et al. Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxamides. J. Med. Chem. 48, 3344–3353 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Wang, R.-H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Roth, M. & Chen, W. Y. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609–1620 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Villalba, J. M. & Alcain, F. J. Sirtuin activators and inhibitors. BioFactors 38, 349–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003). The first description of polyphenols as small-molecule sirtuin activators.

    Article  CAS  PubMed  Google Scholar 

  189. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Chauhan, D. et al. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br. J. Haematol. 155, 588–598 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Chen, C. W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Smith, B. C. & Denu, J. M. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46, 14478–14486 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Mai, A. et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 48, 7789–7795 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Grozinger, C. M., Chao, E. D., Blackwell, H. E., Moazed, D. & Schreiber, S. L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Tervo, A. J. et al. An in silico approach to discovering novel inhibitors of human sirtuin type 2. J. Med. Chem. 47, 6292–6298 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Smith, B. C., Hallows, W. C. & Denu, J. M. Mechanisms and molecular probes of sirtuins. Chem. Biol. 15, 1002–1013 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Wang, T. T., Schoene, N. W., Kim, E. K. & Kim, Y. S. Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentration-dependent modulation of multiple nuclear receptor-mediated pathways in androgen-responsive prostate cancer cell LNCaP. Mol. Carcinog. 52, 676–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E. & Simon, J. A. Identification of a small molecule inhibitor of Sir2p. Proc. Natl Acad. Sci. USA 98, 15113–15118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Heltweg, B. et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66, 4368–4377 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Mahajan, S. S. et al. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J. Med. Chem. 57, 3283–3294 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Lain, S. et al. Discovery. in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454–463 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Li, L. et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21, 266–281 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. McCarthy, A. R. et al. Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner. Mol. Cancer Ther. 12, 352–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Newbold, A., Salmon, J. M., Martin, B. P., Stanley, K. & Johnstone, R. W. The role of p21waf1/cip1 and p27Kip1 in HDACi-mediated tumor cell death and cell cycle arrest in the Emu-myc model of B-cell lymphoma. Oncogene 33, 5415–5423 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Trapp, J. et al. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2, 1419–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. McGeary, R. P., Bennett, A. J., Tran, Q. B., Cosgrove, K. L. & Ross, B. P. Suramin: clinical uses and structure−activity relationships. Mini Rev. Med. Chem. 8, 1384–1394 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Small, E. J. et al. Suramin therapy for patients with symptomatic hormone-refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J. Clin. Oncol. 18, 1440–1450 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Solomon, J. M. et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28–38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  212. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Dey, A., Chitsaz, F., Abbasi, A., Misteli, T. & Ozato, K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl Acad. Sci. USA 100, 8758–8763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Dey, A., Nishiyama, A., Karpova, T., McNally, J. & Ozato, K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell 20, 4899–4909 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Zhao, R., Nakamura, T., Fu, Y., Lazar, Z. & Spector, D. L. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat. Cell Biol. 13, 1295–1304 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Morinière, J. et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461, 664–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. French, C. A. et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 27, 2237–2242 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). A study describing the discovery of JQ1, the first small molecule capable of selectively displacing BET bromodomain proteins from chromatin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. VonVoigtlander, P. F. & Straw, R. N. Alprazolam: review of pharmacological, pharmacokinetic, and clinical data. Drug Dev. Res. 6, 1–12 (1985).

    Article  CAS  Google Scholar 

  221. Filippakopoulos, P. et al. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem. 20, 1878–1886 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Anders, L. et al. Genome-wide localization of small molecules. Nat. Biotechnol. 32, 92–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011). References 223 and 224 genetically and pharmacologically validate BRD4 as a therapeutic target in AML.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Yang, Z., He, N. & Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell. Biol. 28, 967–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  227. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108, 16669–16674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ott, C. J. et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120, 2843–2852 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013). A study demonstrating that a major mechanism of action of BET inhibitors is through displacement of BRD4 from super-enhancers.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Dani, C. et al. Extreme instability of myc mRNA in normal and transformed human cells. Proc. Natl Acad. Sci. USA 81, 7046–7050 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Zou, Z. et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene 33, 2395–2404 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Chung, C. W. et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem. 54, 3827–3838 (2011).

    Article  CAS  PubMed  Google Scholar 

  238. Hewings, D. S. et al. 3,5-Dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J. Med. Chem. 54, 6761–6770 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661–672 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Muntean, A. G. et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17, 609–621 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Picaud, S. et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res. 73, 3336–3346 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Younes, A. et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 17, 622–631 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Dang, L., Yen, K. & Attar, E. C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 27, 599–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Isakovic, L. et al. Constrained (l-)-S-adenosyl-l-homocysteine (SAH) analogues as DNA methyltransferase inhibitors. Bioorg. Med. Chem. Lett. 19, 2742–2746 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. Jüttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Santi, D. V., Garrett, C. E. & Barr, P. J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9–10 (1983).

    Article  CAS  PubMed  Google Scholar 

  248. Gowher, H. & Jeltsch, A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol. Ther. 3, 1062–1068 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. Li, L. H., Olin, E. J., Buskirk, H. H. & Reineke, L. M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 30, 2760–2769 (1970).

    CAS  PubMed  Google Scholar 

  250. Aimiuwu, J. et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 119, 5229–5238 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Schaefer, M., Hagemann, S., Hanna, K. & Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69, 8127–8132 (2009).

    Article  CAS  PubMed  Google Scholar 

  252. Kantarjian, H. et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106, 1794–1803 (2006).

    Article  CAS  PubMed  Google Scholar 

  253. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009). A landmark study reporting an overall survival advantage for patients with high-risk MDS treated with azacitidine compared with conventional standard of care.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Chuang, J. C. et al. S110, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol. Cancer Ther. 9, 1443–1450 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Bejar, R. et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124, 2705–2712 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Call, K. M., Jensen, J. C., Liber, H. L. & Thilly, W. G. Studies of mutagenicity and clastogenicity of 5-azacytidine in human lymphoblasts and Salmonella typhimurium. Mutat. Res. 160, 249–257 (1986).

    Article  CAS  PubMed  Google Scholar 

  257. Cornacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200 (1988).

    CAS  PubMed  Google Scholar 

  258. Kuck, D., Singh, N., Lyko, F. & Medina-Franco, J. L. Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem. 18, 822–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  259. Siedlecki, P. et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 49, 678–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  260. Datta, J. et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res. 69, 4277–4285 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Brueckner, B. et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 65, 6305–6311 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Song, J., Teplova, M., Ishibe-Murakami, S. & Patel, D. J. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335, 709–712 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Dubroff, L. M. & Reid, R. J. Jr. Hydralazine-pyrimidine interactions may explain hydralazine-induced lupus erythematosus. Science 208, 404–406 (1980).

    Article  CAS  PubMed  Google Scholar 

  264. Lee, B. H., Yegnasubramanian, S., Lin, X. & Nelson, W. G. Procainamide is a specific inhibitor of DNA methyltransferase 1. J. Biol. Chem. 280, 40749–40756 (2005).

    Article  PubMed  CAS  Google Scholar 

  265. Segura-Pacheco, B. et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res. 9, 1596–1603 (2003).

    CAS  PubMed  Google Scholar 

  266. Caulfield, T. & Medina-Franco, J. L. Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J. Struct. Biol. 176, 185–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  267. Lee, J. S., Smith, E. & Shilatifard, A. The language of histone crosstalk. Cell 142, 682–685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Santoro, F. et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 121, 3459–3468 (2013).

    Article  CAS  PubMed  Google Scholar 

  269. Heideman, M. R. et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 121, 2038–2050 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  271. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  272. Shiota, M. et al. Tip60 promotes prostate cancer cell proliferation by translocation of androgen receptor into the nucleus. Prostate 70, 540–554 (2010).

    CAS  PubMed  Google Scholar 

  273. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  274. Palumbo, A. et al. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncol. 15, 333–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Deardorff, M. A. et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489, 313–317 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Wu, J. et al. The up-regulation of histone deacetylase 8 promotes proliferation and inhibits apoptosis in hepatocellular carcinoma. Dig. Dis. Sci. 58, 3545–3553 (2013).

    Article  CAS  PubMed  Google Scholar 

  278. Wilson, B. J., Tremblay, A. M., Deblois, G., Sylvain-Drolet, G. & Giguère, V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol. Endocrinol. 24, 1349–1358 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Balasubramanian, S. et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026–1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  280. Rettig, I. et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. 6, e1657 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Li, Y., Shin, D. & Kwon, S. H. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 280, 775–793 (2013).

    CAS  PubMed  Google Scholar 

  282. Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729–26734 (2005).

    Article  CAS  PubMed  Google Scholar 

  283. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  284. Boyault, C. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 21, 2172–2181 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Santo, L. et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119, 2579–2589 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01684150 (2016).

  288. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02082977 (2016).

  289. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01897571 (2016).

  290. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02395601 (2016).

  291. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02273102 (2016).

  292. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02177812 (2016).

  293. EU Clinical Trials Register. ClinicalTrialsRegister.eu https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-002447-29/ES (2013).

  294. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01713582 (2016).

  295. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01949883 (2016).

  296. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02419417 (2016).

  297. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01587703 (2016).

  298. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02391480 (2016).

  299. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02308761 (2016).

  300. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02468687 (2016).

  301. O'Connor, O. A. et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal Phase II BELIEF (CLN-19) Study. J. Clin. Oncol. 33, 2492–2499 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. San-Miguel, J. F. et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 15, 1195–1206 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.W.J. is funded by project and programme grants from the National Health and Medical Research Council of Australia (NHMRC), an NHMRC Senior Principal Research Fellowship and grants from the Cancer Council Victoria and the Victorian Cancer Agency (VCA). C.J.O. is supported by a Fellow Award from the Leukemia and Lymphoma Society (5667–13) and by a US National Cancer Institute (NCI) Pathway to Independence Award (K99CA190861). J.S. is supported by a Fellowship from the Eva & Les Erdi Snowdome Foundation/VCA and project grants from the Cancer Council of Victoria and NHMRC. J.E.B. is supported by research grants from the US National Institutes of Health (NIH) (R01-CA176745 and P01-CA066996), the William Lawrence & Blanche Hughes Foundation and a Leukemia & Lymphoma Society Specialized Center of Research (SCOR) grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricky W. Johnstone or James E. Bradner.

Ethics declarations

Competing interests

R.W.J. has received research grants and honorarium from Novartis, Astra-Zeneca, AbbVie and Roche. J.S. has received speakers' bureaux/honoraria from Bristol-Myers Squibb (BMS), Celgene and Novartis, travel sponsorships from BMS and Novartis, and research funding from BMS. J.E.B. is a founder of Tensha Therapeutics, a biotechnology company that develops drug-like derivatives of JQ1 as investigational cancer therapies and is a current employee of Novartis.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Histone methylation probes (PDF 3337 kb)

Supplementary information S2 (table)

Histone acetyltransferase inhibitors (PDF 1135 kb)

Supplementary information S3 (table)

Metal-dependent histone deacetylase inhibitors (PDF 2974 kb)

Supplementary information S4 (table)

NAD+-dependent deacetylase (sirtuin) activators and inhibitors (PDF 1610 kb)

Supplementary information S5 (table)

Bromodomain inhibitors (PDF 1436 kb)

Supplementary information S6 (table)

DNA methyltransferase inhibitors (PDF 1820 kb)

Glossary

Epigenomic

A general descriptor that refers to the complete characteristic features of the chromatin interface — transcription factor binding, nucleosome positioning and modifications, and DNA modifications — that can influence transcriptional aspects of gene expression control.

Gene control

A term that generally refers to the multiple regulatory aspects of expressing a unique gene product, from initial mechanisms of transcription to the final processing and localization of mature proteins.

Integrated epigenomics

The use of epigenome-wide measurements to resolve global and gene locus-specific characteristics of chromatin features.

Cereblon

A protein that serves as an adaptor for a cullin-4–RING ubiquitin ligase complex. Thalidomide analogues bind to cereblon, redirecting its ubiquitin ligase activity towards neosubstrates in the cell.

Euchromatin

A loosely packed chromatin state that is generally more permissive to transcription.

Heterochromatin

A more tightly packed chromatin state generally associated with transcriptional repression.

Pharmacokinetics

The study of drug disposition over time once it enters the body, including factors such as absorption, distribution, metabolism and excretion.

MYST family

A highly conserved family of histone acetyltransferases (HATs) containing an acetyl–CoA-binding motif and a zinc finger domain. Dysregulation of MYST family HATs has been linked to several cancers.

NUT midline carcinoma

(NMC). A rare, aggressive epithelial cancer with a predilection for midline structures. This malignancy is driven by oncogenic fusions of either BRD3 or BRD4 to the entire NUT protein. Constitutive activation and abnormal nuclear localization of NUT permits aberrant association with acetylated chromatin.

Super-enhancers

Clusters of enhancers bound by an especially high amount of master regulatory transcription factors found in proximity to genes integral to cell identity.

Synthetic lethality

Refers to an effect whereby a single drug (or mutation) does not affect cell viability in isolation but when combined, markedly synergizes to induce cell death.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shortt, J., Ott, C., Johnstone, R. et al. A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17, 160–183 (2017). https://doi.org/10.1038/nrc.2016.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing