Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Preclinical mouse solid tumour models: status quo, challenges and perspectives

Key Points

  • A systematic survey of 949 studies published in 2016 was conducted to quantitatively review the status quo of mouse tumour model experimentation.

  • The vast majority of in vivo studies relied on reductionist cell line-based models. More advanced models such as patient-derived xenograft, genetically engineered mouse and environmentally induced models were not used in most studies, and their availability is dependent on the tumour type.

  • Primary tumours are still the major focus of preclinical oncology, and there is a lack of mouse models focusing on advanced stages of cancer progression such as metastasis, resistance and relapse.

  • The predictive value of therapeutic mouse tumour experiments would likely benefit from a better implementation of clinical-like study design and data representation.

  • Insufficient and non-standardized reporting of mouse tumour experiments calls into question the reproducibility and comparability of preclinical studies.

  • Concerted efforts to ensure a wide distribution of standardized mouse tumour models that faithfully recapitulate the dynamics of human cancer are urgently needed.

Abstract

Oncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued. It thereby identifies some of the most important challenges in this field and discusses potential ways in which preclinical mouse tumour models could be improved for better relevance, reproducibility and translatability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the frequency distribution of different categories of tumour models in preclinical studies published in 2016.
Figure 2: Modelling of different tumour types in mouse model studies.
Figure 3: Modelling tumour progression and metastatic disease in mouse tumour model studies.
Figure 4: Experimental approaches in mouse tumour model studies.
Figure 5: Examples of data representation in preclinical mouse tumour studies.

Similar content being viewed by others

References

  1. Marx, V. Models: stretching the skills of cell lines and mice. Nat. Methods 11, 617–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017). A comprehensive, state-of-the-art review summarizing bottlenecks and perspectives on current PDX technology.

    Article  CAS  PubMed  Google Scholar 

  4. Zitvogel, L., Pitt, J. M., Daillère, R., Smyth, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Le Magnen, C., Dutta, A. & Abate-Shen, C. Optimizing mouse models for precision cancer prevention. Nat. Rev. Cancer 16, 187–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017). An insightful review about the development of novel GEM tumour models and their application in basic and translational oncology.

    Article  CAS  PubMed  Google Scholar 

  7. Day, C.-P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suggitt, M. & Bibby, M. C. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971–981 (2005).

    CAS  PubMed  Google Scholar 

  9. Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239 (2003).

    PubMed  Google Scholar 

  10. Talmadge, J. E., Singh, R. K., Fidler, I. J. & Raz, A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 170, 793–804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sikder, H. et al. Disruption of Id1 reveals major differences in angiogenesis between transplanted and autochthonous tumors. Cancer Cell 4, 291–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 654–658 (2007).

    Article  CAS  Google Scholar 

  18. Hausser, H.-J. & Brenner, R. E. Phenotypic instability of Saos-2 cells in long-term culture. Biochem. Biophys. Res. Commun. 333, 216–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Daniel, V. C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gillet, J.-P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl Acad. Sci. USA 108, 18708–18713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alkema, N. G. et al. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Sci. Rep. 5, 14495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi, Y. Y. et al. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci. Rep. 6, 22172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pavía-Jiménez, A., Tcheuyap, V. T. & Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 9, 1848–1859 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fiebig, H. H., Schuchhardt, C., Henss, H., Fiedler, L. & Löhr, G. W. Comparison of tumor response in nude mice and in the patients. Behring Inst. Mitt. 74, 343–352 (1984).

    Google Scholar 

  27. Siolas, D. & Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315–5319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clohessy, J. G. & Pandolfi, P. P. Mouse hospital and co-clinical trial project — from bench to bedside. Nat. Rev. Clin. Oncol. 12, 491–498 (2015).

    Article  PubMed  Google Scholar 

  29. Morelli, M. P. et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J. Clin. Oncol. 30, e45–e48 (2012). A case study exemplifying the application of a personalized PDX model as a patient's 'avatar' to evaluate a battery of potential therapeutic options.

    Article  CAS  PubMed  Google Scholar 

  30. Azaro, A. et al. A first-in-human phase I trial of LY2780301, a dual p70 S6 kinase and Akt Inhibitor, in patients with advanced or metastatic cancer. Invest. New Drugs 33, 710–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Girotti, M. R. et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 6, 286–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015). A landmark study introducing the 'one animal per model per treatment' trial design to perform efficacy, biomarker and resistance studies in PDX models on a population level.

    Article  CAS  PubMed  Google Scholar 

  33. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kavuri, S. M. et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5, 832–841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanella, E. R. et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci. Transl. Med. 7, 272ra12 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Landis, M. D., Lehmann, B. D., Pietenpol, J. A. & Chang, J. C. Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15, 201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lawrence, M. G. et al. Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate 75, 1475–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Klco, J. M. et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25, 379–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eyre, R. et al. Patient-derived mammosphere and xenograft tumour initiation correlates with progression to metastasis. J. Mammary Gland Biol. Neoplasia 21, 99–109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garrido-Laguna, I. et al. Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793–5800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 4, 137ra75 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Delitto, D. et al. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297–1303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamagiwa, K. & Ichikawa, K. Experimentelle Studie über die Pathogenese der Epithelialgeschwülste [German]. Mitt. Med. Fak. Tokio 15, 295–344 (1915).

    Google Scholar 

  45. Tsutsui, H. Über das künstlich erzeugte Carcinoid in der Maus. Gann 12, 17–21 (1918).

    Google Scholar 

  46. Gaylor, D. W. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens? Regul. Toxicol. Pharmacol. 41, 128–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kemp, C. J. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb. Protoc. 2015, 865–874 (2015). An exhaustive review on the history, recent developments and future perspectives of chemically induced animal models of cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Abel, E. L., Angel, J. M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4, 1350–1362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balmain, A. & Yuspa, S. H. Milestones in skin carcinogenesis: the biology of multistage carcinogenesis. J. Invest. Dermatol. 134, E2–E7 (2014).

    Article  PubMed  Google Scholar 

  50. Kobayashi, T., Owczarek, T. B., McKiernan, J. M. & Abate-Shen, C. Modelling bladder cancer in mice: opportunities and challenges. Nat. Rev. Cancer 15, 42–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gurley, K. E., Moser, R. D. & Kemp, C. J. Induction of lung tumors in mice with urethane. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot077446 (2015).

  52. Gurley, K. E., Moser, R. D. & Kemp, C. J. Induction of liver tumors in mice with N-ethyl-N-nitrosourea or N-nitrosodiethylamine. Cold Spring Harb. Protoc. 2015, 941–942 (2015).

    PubMed  Google Scholar 

  53. Gurley, K. E., Moser, R. D. & Kemp, C. J. Induction of colon cancer in mice with 1,2-dimethylhydrazine. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot077453 (2015).

  54. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat. Med. 21, 946–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Westcott, P. M. K. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Steele, V. E. & Lubet, R. A. The use of animal models for cancer chemoprevention drug development. Semin. Oncol. 37, 327–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, P. et al. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat. Genet. 38, 888–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Hanahan, D., Wagner, E. F. & Palmiter, R. D. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 21, 2258–2270 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nat. Rev. Cancer 2, 251–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2, 292–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schonig, K., Schwenk, F., Rajewsky, K. & Bujard, H. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res. 30, e134 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Singh, M., Murriel, C. L. & Johnson, L. Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res. 72, 2695–2700 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Singh, M. et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat. Biotechnol. 28, 585–593 (2010). A seminal paper showing the predictive power of GEM models when therapeutic studies are conducted according to clinical criteria.

    Article  CAS  PubMed  Google Scholar 

  68. Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    Article  PubMed  Google Scholar 

  71. Ding, J. I. E. et al. Current animal models of bladder cancer: awareness of translatability (review). Exp. Ther. Med. 8, 691–699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hillman, G. G. in Tumor Models in Cancer Research 2nd edn (ed. Teicher, B. A. ) 287–305 (Humana Press, 2010).

    Google Scholar 

  73. Kim, S. Animal models of cancer in the head and neck region. Clin. Exp. Otorhinolaryngol. 2, 55–60 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Larmour, L. I., Jobling, T. W. & Gargett, C. E. A review of current animal models for the study of cervical dysplasia and cervical carcinoma. Int. J. Gynecol. Cancer 25, 1345–1352 (2015).

    Article  PubMed  Google Scholar 

  75. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  76. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Tanaka, T. et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94, 965–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Rudel, R. A., Fenton, S. E., Ackerman, J. M., Euling, S. Y. & Makris, S. L. Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ. Health Perspect. 119, 1053–1061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Travis, R. C. & Key, T. J. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 5, 239–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barone, E., Corrado, A., Gemignani, F. & Landi, S. Environmental risk factors for pancreatic cancer: an update. Arch. Toxicol. 90, 2617–2642 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Volkovova, K., Bilanicova, D., Bartonova, A., Letasiova, S. & Dusinska, M. Associations between environmental factors and incidence of cutaneous melanoma. Environ. Health 11, S12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Field, R. W. & Withers, B. L. Occupational and environmental causes of lung cancer. Clin. Chest Med. 33, 681–703 (2012).

    Article  PubMed  Google Scholar 

  83. Connelly, J. M. & Malkin, M. G. Environmental risk factors for brain tumors. Curr. Neurol. Neurosci. Rep. 7, 208–214 (2007).

    Article  PubMed  Google Scholar 

  84. Guerin, E., Man, S., Xu, P. & Kerbel, R. S. A model of postsurgical advanced metastatic breast cancer more accurately replicates the clinical efficacy of antiangiogenic drugs. Cancer Res. 73, 2743–2748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Runge, A. et al. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice. Cancer Res. 74, 4157–4169 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Francia, G., Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer 11, 135–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Killion, J. J., Radinsky, R. & Fidler, I. J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284 (1998).

    Article  PubMed  Google Scholar 

  88. Hackl, C. et al. Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62, 259–271 (2013).

    Article  PubMed  Google Scholar 

  89. Hiroshima, Y. et al. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget 7, 71696–71702 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hiroshima, Y. et al. Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS ONE 10, e0117417 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Justilien, V. & Fields, A. P. Utility and applications of orthotopic models of human non-small cell lung cancer (NSCLC) for the evaluation of novel and emerging cancer therapeutics. Curr. Protoc. Pharmacol. 62, 14.27 (2013).

    Article  Google Scholar 

  93. Mittal, V. K., Bhullar, J. S. & Jayant, K. Animal models of human colorectal cancer: current status, uses and limitations. World J. Gastroenterol. 21, 11854–11861 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Qiu, W. & Su, G. H. Development of orthotopic pancreatic tumor mouse models. Methods Mol. Biol. 980, 215–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao, G.-J. et al. Establishment of an orthotopic transplantation tumor model of hepatocellular carcinoma in mice. World J. Gastroenterol. 18, 7087–7092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Saxena, M. & Christofori, G. Rebuilding cancer metastasis in the mouse. Mol. Oncol. 7, 283–296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst. 91, 80–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Pfitzenmaier, J. et al. Telomerase activity in disseminated prostate cancer cells. BJU Int. 97, 1309–1313 (2006).

    Article  PubMed  Google Scholar 

  101. Kerbel, R. S. A decade of experience in developing preclinical models of advanced- or early-stage spontaneous metastasis to study antiangiogenic drugs, metronomic chemotherapy, and the tumor microenvironment. Cancer J. 21, 274–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Savage, P. & Mahmoud, S. Development and economic trends in cancer therapeutic drugs: a 5-year update 2010–2014. Br. J. Cancer 112, 1037–1041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mullard, A. Parsing clinical success rates. Nat. Rev. Drug Discov. 15, 447 (2016).

    PubMed  Google Scholar 

  104. Thomas, D. W. et al. Clinical development success rates 2006–2015 (BIO, BioMedTracker and Amplion, 2016).

    Google Scholar 

  105. Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Malaney, P., Nicosia, S. V. & Dave, V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 344, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Beatty, G. L. et al. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149, 201–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Cassidy, J. W., Caldas, C. & Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75, 2963–2968 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu, B. et al. Gastric cancer: classification, histology and application of molecular pathology. J. Gastrointest. Oncol. 3, 251–261 (2012).

    PubMed  PubMed Central  Google Scholar 

  114. Huynh, H., Ong, R. & Zopf, D. Antitumor activity of the multikinase inhibitor regorafenib in patient-derived xenograft models of gastric cancer. J. Exp. Clin. Cancer Res. 34, 132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Pavlakis, N. et al. Regorafenib for the treatment of advanced gastric cancer (INTEGRATE): a multinational placebo-controlled phase II trial. J. Clin. Oncol. 34, 2728–2735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, 694–708 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P. & Hutmacher, D. W. Concise review: humanized models of tumor immunology in the 21 st century: convergence of cancer research and tissue engineering. Stem Cells 33, 1696–1704 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Morton, J. J. et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene 35, 290–300 (2016). A potential breakthrough study on humanized mouse models reporting the engraftment of ex vivo -expanded human haematopoietic stem cells into immunodeficient mice.

    Article  CAS  PubMed  Google Scholar 

  119. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hodi, F. S. et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17, 1558–1568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gillespie, T. W. Understanding waterfall plots. J. Adv. Pract. Oncol. 3, 106–111 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Demidenko, E. Three endpoints of in vivo tumour radiobiology and their statistical estimation. Int. J. Radiat. Biol. 86, 164–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nasarre, P. et al. Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but Is dispensable for later stages of tumor growth. Cancer Res. 69, 1324–1333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sheridan, C. Amgen's angiopoietin blocker fails in ovarian cancer. Nat. Biotechnol. 33, 5–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Nishino, M., Jagannathan, J. P., Ramaiya, N. H. & Van den Abbeele, A. D. Revised RECIST guideline version 1.1: what oncologists want to know and what radiologists need to know. AJR Am. J. Roentgenol. 195, 281–289 (2010).

    Article  PubMed  Google Scholar 

  130. DeVita, V. T. Jr & Rosenberg, S. A. Two hundred years of cancer research. N. Engl. J. Med. 366, 2207–2214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Srivastava, K. et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 26, 880–895 (2014). An illustrative example of the application of mouse models of postsurgical metastasis for evaluating efficacy of adjuvant therapy.

    Article  CAS  PubMed  Google Scholar 

  132. Day, C.-P. et al. “Glowing Head” mice: a genetic tool enabling reliable preclinical image-based evaluation of cancers in immunocompetent allografts. PLoS ONE 9, e109956 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Rottenberg, S. & Borst, P. Drug resistance in the mouse cancer clinic. Drug Resist. Updat. 15, 81–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Gurlevik, E. et al. Adjuvant gemcitabine therapy improves survival in a locally induced, R0-resectable model of metastatic intrahepatic cholangiocarcinoma. Hepatology 58, 1031–1041 (2013). An excellent example of using a focally inducible GEM model to study tumour relapse and metastasis.

    Article  PubMed  CAS  Google Scholar 

  135. Morrison, S. J. Time to do something about reproducibility. eLife 3, e03981 (2014).

    Article  PubMed Central  Google Scholar 

  136. Baker, M. Reproducibility: respect your cells! Nature 537, 433–435 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Galuschka, C., Proynova, R., Roth, B., Augustin, H. G. & Muller-Decker, K. Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res. 77, 2557–2563 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Flecknell, P. Replacement, reduction and refinement. ALTEX 19, 73–78 (2002).

    PubMed  Google Scholar 

  139. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010). A perspective article providing a set of rules that preclinical researchers should follow in order to improve the reporting of animal experimentation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. National Research Council (US) Institute for Laboratory Animal Research. Guidance for the description of animal research in scientific publications. (Natl Acad. Press, 2011).

  141. Baker, D., Lidster, K., Sottomayor, A. & Amor, S. Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies. PLoS Biol. 12, e1001756 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. [No authors listed.] Announcement: towards greater reproducibility for life-sciences research in Nature. Nature 546, 8 (2017).

  143. Marcus, E. & whole Cell team. A STAR Is Born. Cell 166, 1059–1060 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Hofner, T. et al. Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer. J. Urol. 190, 2263–2270 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Noll, E. M. et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat. Med. 22, 278–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ince, T. A. et al. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat. Commun. 6, 7419 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Reilly, K. M. Using the collaborative cross to study the role of genetic diversity in cancer-related phenotypes. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot079178 (2016).

  148. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The diversity outbred mouse population. Mamm. Genome 23, 713–718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Huijbers, I. J. et al. Using the GEMM-ESC strategy to study gene function in mouse models. Nat. Protoc. 10, 1755–1785 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Friedrich, M. J. et al. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat. Protoc. 12, 289–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Maresch, R. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat. Commun. 7, 10770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Weber, J. et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl Acad. Sci. USA 112, 13982–13987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sánchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015). A thorough review detailing applications of CRISPR–Cas9 technology in oncology research.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Anastassiadis, K. et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Models Mech. 2, 508–515 (2009).

    Article  CAS  Google Scholar 

  156. Imayoshi, I., Hirano, K., Kitano, S., Miyachi, H. & Kageyama, R. In vivo evaluation of ΦC31 recombinase activity in transgenic mice. Neurosci. Res. 73, 106–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Karimova, M. et al. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. 41, e37 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Karimova, M., Splith, V., Karpinski, J., Pisabarro, M. T. & Buchholz, F. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci. Rep. 6, 30130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. O'Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017). Refs 162 and 163 are two compelling examples of the transformative potential of tumour organoid technology for mouse modelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors regret that, because of space limitations, they could not cite all original research articles and related references on this topic. Work in the authors' laboratory is supported by funds from the Deutsche Forschungsgemeinschaft, the Helmholtz Association and the European Union.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to discussion of the content, and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hellmut G. Augustin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

List of all reviewed 2016 studies (PDF 782 kb)

Supplementary information S2 (table)

Drop-down list values (PDF 235 kb)

Supplementary information S3 (figure)

Venn diagram of mouse tumour model categories indicating absolute numbers as well as percentage of total mouse tumour model studies (n=618) (PDF 287 kb)

Supplementary information S4 (table)

Journal-wise model distribution (PDF 86 kb)

Glossary

Immune checkpoint blockade

A therapeutic approach aimed at restoring or enhancing antitumour immune response by blocking signalling pathways that naturally limit immune reactions to prevent autoimmunity.

Autochthonous

Arising in its natural site; refers to de novo tumours that evolve out of normal cells within a living organism, in contrast to transplanted tumours, which are referred to as non-autochthonous.

Allografts

Tumours transplanted from one individual to another of the same species.

Xenografts

Cells or tissues that are transplanted between two different species, such as human and mouse.

Orthotopically

The engraftment of tumours into the 'natural' anatomical site or organ in which they usually arise.

Co-clinical trials

Trials in which an ongoing human clinical trial is mirrored by simultaneous studies in mice.

Avatar mice

A mouse into which a patient's tumour tissue is grafted to generate a 'personalized' model that is then used to identify an optimal therapeutic strategy.

'One animal per model per treatment' trial design

Also known as '1 × 1 × 1' trial design; a type of trial design in which individual mice (instead of groups of mice) from large patient-derived xenograft collections are used to evaluate drug response in a heterogeneous study population.

Carcinogen bioassay

A standardized measurement of an animal response to an environmental exposure in order to estimate its cancer-causing potential.

Site-specific recombinase (SSR) systems

Enzymatic systems, such as Cre–loxP or Flp–FRT, that rearrange genomic target segments that have been marked by specific DNA recognition sites.

Tumour dormancy

Undetectable and asymptomatic tumour cells that remain in patients who have been clinically disease-free for a long period of time. Tumours can clinically recur from this population of cells.

Response Evaluation Criteria in Solid Tumours

(RECIST). A rule set aimed at defining whether a patient with a tumour improves (objective response), stays the same (stable disease) or worsens (progressive disease) under treatment.

3R principles

Guidelines aimed at improving animal welfare and the quality of in vivo experiments by developing alternative models (replacement), limiting the number of animals used (reduction) and minimizing the suffering of animals (refinement).

Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines

A framework for proper design, analysis and reporting of mouse studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gengenbacher, N., Singhal, M. & Augustin, H. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17, 751–765 (2017). https://doi.org/10.1038/nrc.2017.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.92

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer