Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineered T cells: the promise and challenges of cancer immunotherapy

Key Points

  • Adoptive immunotherapy has rapidly evolved to harness modern genetic techniques to create T cells with enhanced specificity, efficacy and safety. Artificial expression of chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) in autologous T cells has enabled a new generation of targeted cellular therapeutics.

  • Early clinical trials targeting B cell malignancies have shown great promise, generating unprecedented response rates to treatment of patients with relapsed and refractory B cell acute lymphoblastic leukaemia (B-ALL). As more patients with different B cell malignancies are treated, areas for further optimization are brought to light.

  • Engineered T cell therapy has been adapted to treat non-B cell malignancies, including multiple myeloma and myeloid malignancies as well as solid tumours. To date, target selection has proved challenging as many tumour-conserved markers are also expressed on benign tissues (for example, mesothelin) and other tumour-specific markers are less uniformly expressed (for example, epidermal growth factor receptor variant III (EGFRvIII)).

  • More precise targeting of tumour cell subsets, such as cancer stem cells, or targeting of portions of intracellular tumour markers in the context of the major histocompatibility complex (MHC), may enhance specificity and limit off-tumour effects. Combining non-specific and specific immune responses (for example, T cells redirected for universal cytokine killing (TRUCKs), fluorescein isothiocyanate (FITC)–folate plus FITC-CAR T cell) could further enhance antitumour immune response, while minimizing off-tumour effects.

  • Although lentiviral and retroviral transduction are still the most common approaches to ex vivo T cell gene modification, DNA and RNA transfection have some advantages. In particular, RNA transfection of short guide RNAs enables CRISPR–Cas9 modification of T cells. This targeted gene disruption approach could help to create engineered T cells with supraphysiological antitumour capabilities.

  • In addition to specificity-enhancing artificial receptor expression, the next generation of engineered T cells may include modifications to overcome tumour-mediated immune suppression, additional receptors to enable Boolean gating of signal transduction or safety switches to enhance precision control of in vivo engineered T cell activity.

Abstract

The immune system evolved to distinguish non-self from self to protect the organism. As cancer is derived from our own cells, immune responses to dysregulated cell growth present a unique challenge. This is compounded by mechanisms of immune evasion and immunosuppression that develop in the tumour microenvironment. The modern genetic toolbox enables the adoptive transfer of engineered T cells to create enhanced anticancer immune functions where natural cancer-specific immune responses have failed. Genetically engineered T cells, so-called 'living drugs', represent a new paradigm in anticancer therapy. Recent clinical trials using T cells engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) have produced stunning results in patients with relapsed or refractory haematological malignancies. In this Review we describe some of the most recent and promising advances in engineered T cell therapy with a particular emphasis on what the next generation of T cell therapy is likely to entail.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell receptor and co-stimulatory activation or inhibition of T cells.
Figure 2: Comparing basic structure of engineered T cell receptors and chimeric antigen receptors.
Figure 3: Chimeric antigen receptor design and evolution.
Figure 4: Engineered T cell manufacturing.
Figure 5: New chimeric antigen receptor models and concepts.

Similar content being viewed by others

References

  1. Disis, M. L. et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 54, 16–20 (1994).

    CAS  PubMed  Google Scholar 

  2. Billingham, R. E., Brent, L. & Medawar, P. B. Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc. R. Soc. Lond. B Biol. Sci. 143, 58–80 (1954).

    CAS  PubMed  Google Scholar 

  3. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mackensen, A. et al. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J. Clin. Oncol. 24, 5060–5069 (2006).

    CAS  PubMed  Google Scholar 

  5. Dudley, M. E. et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J. Immunother. 24, 363–373 (2001).

    CAS  PubMed  Google Scholar 

  6. Algarra, I., Cabrera, T. & Garrido, F. The HLA crossroad in tumor immunology. Hum. Immunol. 61, 65–73 (2000).

    CAS  PubMed  Google Scholar 

  7. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra138 (2013).

    Google Scholar 

  8. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra225 (2014).

    Google Scholar 

  9. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). Report documenting the 90% complete remission rates in adults and children with relapsed and highly refractory B-ALL after a single cycle of CART19 therapy. Along with reference 8, the results are reproducible and have provided validation of earlier reported results.

    PubMed  PubMed Central  Google Scholar 

  11. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Scheuermann, R. H. & Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma 18, 385–397 (1995).

    CAS  PubMed  Google Scholar 

  14. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    CAS  PubMed  Google Scholar 

  15. Schuster, S. J. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood 126, 183–183 (2015).

    Google Scholar 

  16. Garfall, A. L. et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl Med. 4, 132ra153 (2012). From the first-in-human clinical trials of CAR T cells, decade-long persistence, stable engraftment and safety in more than 500 years of patient follow-up were demonstrated.

    Google Scholar 

  18. Yang, W. et al. Diminished expression of CD19 in B-cell lymphomas. Cytometry B Clin. Cytom. 63, 28–35 (2005).

    PubMed  Google Scholar 

  19. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Curran, K. J. et al. Multi-center clinical trial of CAR T cells in pediatric/young adult patients with relapsed B-cell ALL. Blood 126, 2533–2533 (2015).

    Google Scholar 

  21. Grupp, S. A. et al. Durable remissions in children with relapsed/refractory ALL treated with T cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood 126, 681–681 (2015).

    Google Scholar 

  22. Lee, D. W. et al. Safety and response of incorporating CD19 chimeric antigen receptor T cell therapy in typical salvage regimens for children and young adults with acute lymphoblastic leukemia. Blood 126, 684 (2015).

    Google Scholar 

  23. Maude, S. L. et al. Efficacy and safety of humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 in children with relapsed/refractory ALL. Blood 126, 683 (2015).

    Google Scholar 

  24. Park, J. H. et al. Implications of minimal residual disease negative complete remission (MRD-CR) and allogeneic stem cell transplant on safety and clinical outcome of CD19 targeted 19-28z CAR modified T cells in adult patients with relapsed, refractory B-cell ALL. Blood 126, 682 (2015).

    Google Scholar 

  25. Budde, L. E. et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE 8, e82742 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zegers, B. J. et al. κ-Chain deficiency. An immunoglobulin disorder. N. Engl. J. Med. 294, 1026–1030 (1976).

    CAS  PubMed  Google Scholar 

  30. Vera, J. et al. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108, 3890–3897 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl Med. 3, 95ra73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Wang, X. et al. Phase I studies of central-memory-derived CD19 CAR T cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127, 2980–2990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bellucci, R. et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood 105, 3945–3950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Novak, A. J. et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103, 689–694 (2004).

    CAS  PubMed  Google Scholar 

  37. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    CAS  PubMed  Google Scholar 

  39. O'Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, G. et al. APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat. Immunol. 1, 252–256 (2000).

    CAS  PubMed  Google Scholar 

  41. Carpenter, R. O. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19, 2048–2060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Rhee, F. et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 105, 3939–3944 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Casucci, M. et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122, 3461–3472 (2013).

    CAS  PubMed  Google Scholar 

  44. Gill, S. et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123, 2343–2354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kenderian, S. S. et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29, 1637–1647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mardiros, A. et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122, 3138–3148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Munoz, L. et al. Interleukin-3 receptor α chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86, 1261–1269 (2001).

    CAS  PubMed  Google Scholar 

  48. Pizzitola, I. et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28, 1596–1605 (2014).

    CAS  PubMed  Google Scholar 

  49. Baskar, S. et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 14, 396–404 (2008).

    CAS  PubMed  Google Scholar 

  50. Daneshmanesh, A. H. et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int. J. Cancer 123, 1190–1195 (2008).

    CAS  PubMed  Google Scholar 

  51. Gentile, A., Lazzari, L., Benvenuti, S., Trusolino, L. & Comoglio, P. M. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 71, 3132–3141 (2011).

    CAS  PubMed  Google Scholar 

  52. Hudecek, M. et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 116, 4532–4541 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bicocca, V. T. et al. Crosstalk between ROR1 and the pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell 22, 656–667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Choudhury, A. et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br. J. Haematol. 151, 327–335 (2010).

    CAS  PubMed  Google Scholar 

  55. Huang, X. et al. IGF1R- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS ONE 10, e0133152 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19, 3153–3164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Berger, C. et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol. Res. 3, 206–216 (2015).

    CAS  PubMed  Google Scholar 

  58. Deniger, D. C. et al. Sleeping Beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS ONE 10, e0128151 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Tabrizi, M., Bornstein, G. G. & Suria, H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 12, 33–43 (2010).

    CAS  PubMed  Google Scholar 

  60. Disis, M. L. Immune regulation of cancer. J. Clin. Oncol. 28, 4531–4538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Palma, L., Di Lorenzo, N. & Guidetti, B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J. Neurosurg. 49, 854–861 (1978).

    CAS  PubMed  Google Scholar 

  62. Webb, J. R., Milne, K., Watson, P., Deleeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    CAS  PubMed  Google Scholar 

  63. Miao, H. et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS ONE 9, e94281 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Palmer, D. C. et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J. Immunol. 173, 7209–7216 (2004).

    CAS  PubMed  Google Scholar 

  65. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Caruso, H. G. et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 75, 3505–3518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, X. et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 75, 3596–3607 (2015). References 66 and 67 show that the affinity of CAR binding domains can be tuned to discriminate tumours overexpressing the target from normal tissues that express it at physiological levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Furnari, F. B., Cloughesy, T. F., Cavenee, W. K. & Mischel, P. S. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat. Rev. Cancer 15, 302–310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jarboe, J. S., Johnson, K. R., Choi, Y., Lonser, R. R. & Park, J. K. Expression of interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res. 67, 7983–7986 (2007).

    CAS  PubMed  Google Scholar 

  70. Kawakami, M., Kawakami, K., Takahashi, S., Abe, M. & Puri, R. K. Analysis of interleukin-13 receptor α2 expression in human pediatric brain tumors. Cancer 101, 1036–1042 (2004).

    CAS  PubMed  Google Scholar 

  71. Joshi, B. H., Plautz, G. E. & Puri, R. K. Interleukin-13 receptor α chain: a novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res. 60, 1168–1172 (2000).

    CAS  PubMed  Google Scholar 

  72. Sun, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300 (2006).

    CAS  PubMed  Google Scholar 

  73. Sampson, J. H. et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin. Cancer Res. 20, 972–984 (2014).

    CAS  PubMed  Google Scholar 

  74. Johnson, L. A. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl Med. 7, 275ra222 (2015).

    Google Scholar 

  75. O'Rourke, D. M. et al. Pilot study of T cells redirected to EGFRvIII with a chimeric antigen receptor in patients with EGFRvIII+ glioblastoma. ASCO Annu. Meet. Proc. 34, 2067 (2016).

    Google Scholar 

  76. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mujoo, K., Cheresh, D. A., Yang, H. M. & Reisfeld, R. A. Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res. 47, 1098–1104 (1987).

    CAS  PubMed  Google Scholar 

  78. Schulz, G. et al. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 44, 5914–5920 (1984).

    CAS  PubMed  Google Scholar 

  79. Svennerholm, L. et al. Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim. Biophys. Acta 1214, 115–123 (1994).

    CAS  PubMed  Google Scholar 

  80. Doronin, I. I. et al. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 14, 295 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Cheung, N. K. et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J. Clin. Oncol. 30, 3264–3270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pule, M. A. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol. Ther. 12, 933–941 (2005).

    CAS  PubMed  Google Scholar 

  84. Yvon, E. et al. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin. Cancer Res. 15, 5852–5860 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chang, K. & Pastan, I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl Acad. Sci. USA 93, 136–140 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang, K., Pastan, I. & Willingham, M. C. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int. J. Cancer 50, 373–381 (1992).

    CAS  PubMed  Google Scholar 

  89. Hassan, R. & Ho, M. Mesothelin targeted cancer immunotherapy. Eur. J. Cancer 44, 46–53 (2008).

    CAS  PubMed  Google Scholar 

  90. Hassan, R. et al. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am. J. Clin. Pathol. 124, 838–845 (2005).

    CAS  PubMed  Google Scholar 

  91. Kachala, S. S. et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma. Clin. Cancer Res. 20, 1020–1028 (2014).

    CAS  PubMed  Google Scholar 

  92. Ordonez, N. G. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod. Pathol. 16, 192–197 (2003).

    PubMed  Google Scholar 

  93. Ordonez, N. G. Application of mesothelin immunostaining in tumor diagnosis. Am. J. Surg. Pathol. 27, 1418–1428 (2003).

    PubMed  Google Scholar 

  94. Rizk, N. P. et al. Tissue and serum mesothelin are potential markers of neoplastic progression in Barrett's associated esophageal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 21, 482–486 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tchou, J. et al. Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res. Treat. 133, 799–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rump, A. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004).

    CAS  PubMed  Google Scholar 

  97. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl Med. 6, 261ra151 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Zhao, Y. et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Beatty, G. L. et al. Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. ASCO Annu. Meet. Proc. 33, 3007 (2015).

    Google Scholar 

  100. Tanyi, J. L. et al. Safety and feasibility of chimeric antigen receptor modified T cells directed against mesothelin (CART-meso) in patients with mesothelin expressing cancers. Cancer Res. 75, Abstr. CT105 (2015).

    Google Scholar 

  101. Hynes, N. E. & Stern, D. F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198, 165–184 (1994).

    PubMed  Google Scholar 

  102. Rubin, I. & Yarden, Y. The basic biology of HER2. Ann. Oncol. 12, S3–S8 (2001).

    PubMed  Google Scholar 

  103. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    CAS  PubMed  Google Scholar 

  104. Zhu, X. & Verma, S. Targeted therapy in her2-positive metastatic breast cancer: a review of the literature. Curr. Oncol. 22, S19–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebb, D. et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J. Clin. Oncol. 30, 2545–2551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010). Adaptation of the widely used monoclonal antibody trastuzumab to a CAR and administration of CAR T cells demonstrates the difference in potency between an antibody and a dose of 1010 gene-modified CAR T cells, informing future generalization of monoclonal antibody findings to predicted engineered T cell response.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ahmed, N. et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 67, 5957–5964 (2007).

    CAS  PubMed  Google Scholar 

  109. Ahmed, N. et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16, 474–485 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ahmed, N. et al. Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a phase I trial. J. Immunother. Cancer 3, 1 (2015).

    Google Scholar 

  111. Van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

    CAS  PubMed  Google Scholar 

  112. Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl Cancer Inst. 105, 1172–1187 (2013).

    CAS  PubMed  Google Scholar 

  113. Doorduijn, E. M. et al. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. J. Clin. Invest. 126, 784–794 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Dao, T. et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci. Transl Med. 5, 176ra133 (2013). Description of the targeting of an intracellular tumour antigen with monoclonal antibody, laying the groundwork for CAR targeting of intracellular antigens when presented in an HLA complex.

    Google Scholar 

  115. Zhao, Q. et al. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia 29, 2238–2247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Veomett, N. et al. Therapeutic efficacy of an Fc-enhanced TCR-like antibody to the intracellular WT1 oncoprotein. Clin. Cancer Res. 20, 4036–4046 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, S. et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc. Natl Acad. Sci. USA 111, 17266–17271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  119. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  120. Yuan, X. et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400 (2004).

    CAS  PubMed  Google Scholar 

  121. Hauswirth, A. W. et al. Expression of the target receptor CD33 in CD34+/CD38/CD123+ AML stem cells. Eur. J. Clin. Invest. 37, 73–82 (2007).

    CAS  PubMed  Google Scholar 

  122. Walter, R. B., Appelbaum, F. R., Estey, E. H. & Bernstein, I. D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119, 6198–6208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Brown, C. E. et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells. Clin. Cancer Res. 18, 2199–2209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Morgan, R. A. et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23, 1043–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu, X. et al. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget 6, 171–184 (2015).

    PubMed  Google Scholar 

  126. Kim, M. S. et al. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J. Am. Chem. Soc. 137, 2832–2835 (2015). A novel extracellular small-molecule system is described for activation and termination of response by CAR T cells, which may greatly enhance control of CAR T cell effector function. See also ref. 171.

    CAS  PubMed  Google Scholar 

  127. Kudo, K. et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 74, 93–103 (2014).

    CAS  PubMed  Google Scholar 

  128. Chmielewski, M. & Abken, H. CAR T cells transform to TRUCKS: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol. Immunother. 61, 1269–1277 (2012).

    CAS  PubMed  Google Scholar 

  129. Pegram, H. J. et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 29, 415–422 (2015).

    CAS  PubMed  Google Scholar 

  130. Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    CAS  PubMed  Google Scholar 

  131. De Palma, M. et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105, 2307–2315 (2005).

    CAS  PubMed  Google Scholar 

  132. Durand, S. & Cimarelli, A. The inside out of lentiviral vectors. Viruses 3, 132–159 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Montini, E. et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. 24, 687–696 (2006).

    CAS  PubMed  Google Scholar 

  136. Gueguen, E., Rousseau, P., Duval-Valentin, G. & Chandler, M. The transpososome: control of transposition at the level of catalysis. Trends Microbiol. 13, 543–549 (2005).

    CAS  PubMed  Google Scholar 

  137. Liu, H. & Visner, G. A. Applications of Sleeping Beauty transposons for nonviral gene therapy. IUBMB Life 59, 374–379 (2007).

    CAS  PubMed  Google Scholar 

  138. Singh, H. et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 8, e64138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Singh, H., Moyes, J. S., Huls, M. H. & Cooper, L. J. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 22, 95–100 (2015).

    CAS  PubMed  Google Scholar 

  140. Kebriaei, P. et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum. Gene Ther. 23, 444–450 (2012).

    CAS  PubMed  Google Scholar 

  141. Manuri, P. V. et al. PiggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum. Gene Ther. 21, 427–437 (2010).

    CAS  PubMed  Google Scholar 

  142. Nakazawa, Y. et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol. Ther. 19, 2133–2143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    CAS  PubMed  Google Scholar 

  144. Barrett, D. M. et al. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum. Gene Ther. 24, 717–727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 1, 26–31 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015). Description of a strategy to generate universal allogeneic T cells through gene editing by TALENs.

    CAS  PubMed  Google Scholar 

  148. Qasim, W. et al. First clinical application of Talen engineered universal CAR19 T cells in B-ALL. Blood 126, 2046–2046 (2015).

    Google Scholar 

  149. Ren, J. et al. Multiplex Cripsr/Cas9 genome editing to generate potent universal CART and PD1-deficient cells against leukemia. Blood 126, 4280–4280 (2015).

    Google Scholar 

  150. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013). Description of a strategy to generate universal T cells through gene editing by ZFNs.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Parente-Pereira, A. C. et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J. Clin. Immunol. 31, 710–718 (2011).

    CAS  PubMed  Google Scholar 

  155. Hong, M. et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 71, 6997–7009 (2011).

    CAS  PubMed  Google Scholar 

  156. Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ruella, M. et al. Combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells for the treatment and prevention of antigen-loss relapses occurring after CD19-targeted immunotherapies. Blood 126, 2523 (2015).

    Google Scholar 

  159. Beatty, G. L. & Moon, E. K. Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment. Oncoimmunology 3, e970027 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 31, 500–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    CAS  PubMed  Google Scholar 

  164. Pegram, H. J., Park, J. H. & Brentjens, R. J. CD28z CARs and armored CARs. Cancer J. 20, 127–133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  166. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 16, 1245–1256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gargett, T. & Brown, M. P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 5, 235 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015). A novel intracellular 'on switch' is described for gene-modified T cells, which may greatly enhance control of CAR T cell effector function. See also ref. 126.

    PubMed  PubMed Central  Google Scholar 

  172. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    CAS  PubMed  Google Scholar 

  174. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection. in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Grada, Z. et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucleic Acids 2, e105 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. Hegde, M. et al. A bispecific chimeric antigen receptor molecule enhances T cell activation through dual immunological synapse formation and offsets antigen escape in glioblastoma. J. Immunother. Cancer 3, O3 (2015).

    PubMed Central  Google Scholar 

  177. Lanitis, E. et al. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol. Res. 1, 43–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

    CAS  PubMed  Google Scholar 

  179. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl Med. 5, 215ra172 (2013). A description of inhibitory CARs enabling engineered T cell inhibition to avoid on-target, off-tumour CAR T cell reactivity.

    PubMed  PubMed Central  Google Scholar 

  180. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Gaultney, J. G., Redekop, W. K., Sonneveld, P. & Uyl-de Groot, C. A. Novel anticancer agents for multiple myeloma: a review of the evidence for their therapeutic and economic value. Expert Rev. Anticancer Ther. 12, 839–854 (2012).

    CAS  PubMed  Google Scholar 

  182. Saret, C. J. et al. Value of innovation in hematologic malignancies: a systematic review of published cost-effectiveness analyses. Blood 125, 1866–1869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Brenner, H., Gondos, A. & Pulte, D. Trends in long-term survival of patients with chronic lymphocytic leukemia from the 1980s to the early 21st century. Blood 111, 4916–4921 (2008).

    CAS  PubMed  Google Scholar 

  184. Byrd, J. C., Jones, J. J., Woyach, J. A., Johnson, A. J. & Flynn, J. M. Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician. J. Clin. Oncol. 32, 3039–3047 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl Med. 7, 303ra139 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. John, L. B., Kershaw, M. H. & Darcy, P. K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2, e26286 (2013).

    PubMed  PubMed Central  Google Scholar 

  187. Melero, I. et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15, 457–472 (2015).

    CAS  PubMed  Google Scholar 

  188. Mitsuyasu, R. T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96, 785–793 (2000).

    CAS  PubMed  Google Scholar 

  189. Walker, R. E. et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96, 467–474 (2000).

    CAS  PubMed  Google Scholar 

  190. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    CAS  PubMed  Google Scholar 

  191. Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

    CAS  PubMed  Google Scholar 

  193. Kuwana, Y. et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 149, 960–968 (1987).

    CAS  PubMed  Google Scholar 

  194. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Finney, H. M., Lawson, A. D., Bebbington, C. R. & Weir, A. N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 161, 2791–2797 (1998).

    CAS  PubMed  Google Scholar 

  197. Finney, H. & Lawson, A. Chimeric cytoplasmic signalling molecules derived from CD137. US Patent 20040038886 A1 (2004).

  198. Finney, H. M., Akbar, A. N. & Lawson, A. D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR ζ chain. J. Immunol. 172, 104–113 (2004).

    CAS  PubMed  Google Scholar 

  199. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    CAS  PubMed  Google Scholar 

  200. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, J. et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18, 712–725 (2007).

    CAS  PubMed  Google Scholar 

  203. Ying, Z. T. et al. First-in-patient proof of safety and efficacy of a 4th generation chimeric antigen receptor modified T cells for the treatment of relapsed or refractory CD30 positive lymphomas. Mol. Ther. 24 (Suppl. 1), S164 (2015).

    Google Scholar 

  204. Powell, D. J. Jr. et al. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy 11, 923–935 (2009).

    CAS  PubMed  Google Scholar 

  205. Levine, B. L. et al. Ex vivo replicative potential of adult human peripheral blood CD4+ T cells. Transplant. Proc. 29, 2028 (1997).

    CAS  PubMed  Google Scholar 

  206. Levine, B. L. et al. Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J. Hematother 7, 437–448 (1998).

    CAS  PubMed  Google Scholar 

  207. Levine, B. L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl Acad. Sci. USA 103, 17372–17377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    CAS  PubMed  Google Scholar 

  209. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Gardner, R. A. et al. Prolonged functional persistence of CD19CAR T cell products of defined CD4:CD8 composition and transgene expression determines durability of MRD-negative ALL remission. J. Clin. Oncol. 34 (Suppl.), Abstr. 3048 (2016).

    Google Scholar 

  212. Fraietta, J. A. et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127, 1117–1127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Porter, D. L. et al. A phase II, dose-optimization trial of autologous T cells genetically engineered to express anti-CD19 chimeric antigen receptor (CART-19) in patients with relapsed or refractory (r/r) CD19+ chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 31 (Suppl.), Abstr. TPS7132 (2013).

    Google Scholar 

  214. Frey, N. V. et al. Optimizing chimeric antigen receptor (CAR) T cell therapy for adult patients with relapsed or refractory (r/r) acute lymphoblastic leukemia (ALL). J. Clin. Oncol. 34 (Suppl.), Abstr. 7002 (2016).

    Google Scholar 

  215. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Curran, K. J. et al. CD19 targeted allogeneic EBV-specific T cells for the treatment of relapsed ALL in pediatric patients post HSCT. Blood 120, 353 (2012).

    Google Scholar 

  218. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  219. Enblad, G. et al. CD19-targeting third generation CAR T cells for relapsed and refractory lymphoma and leukemia–report from the Swedish phase I/IIa trial. Cancer Immunol. Res. 4, Abstr. A041 (2016).

    Google Scholar 

  220. Dai, H. et al. Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology 4, e1027469 (2015).

    PubMed  PubMed Central  Google Scholar 

  221. Kochenderfer, J. et al. Anti-CD19 chimeric antigen receptor T cells preceded by low-dose chemotherapy to induce remissions of advanced lymphoma. J. Clin. Oncol. 34 (Suppl.), Abstr. LBA3010 (2016).

    Google Scholar 

  222. Evans, M. et al. First generation anti-CD19 chimeric antigen receptor-modified T cells for management of B cell malignances: initial analysis of an ongoing phase I clinical trial. J. Immunother. Cancer 2, 1 (2014).

    Google Scholar 

  223. Sauter, C. S. et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CAR-T) post-high dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). J. Clin. Oncol. 33 (Suppl.), Abstr. 8515 (2015).

    Google Scholar 

  224. Rossi, J. M. et al. Phase 1 biomarker analysis of the ZUMA-1 (KTE-C19-101) study: a Phase 1–2 multi-center study evaluating the safety and efficacy of anti-CD19 CAR T cells (KTE-C19) in subjects with refractory aggressive non-Hodgkin lymphoma (NHL). Blood 126, 2730 (2015).

    Google Scholar 

  225. Locke, F. L. et al. Phase 1 clinical results of the ZUMA-1 (KTE-C19-101) study: a Phase 1–2 multi-center study evaluating the safety and efficacy of anti-CD19 CAR T cells (KTE-C19) in subjects with refractory aggressive non-Hodgkin lymphoma (NHL). Blood 126, 3991 (2015).

    Google Scholar 

  226. Schuster, S. J. et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. J. Clin. Oncol. 33 (Suppl.), Abstr. 8516 (2015).

    Google Scholar 

  227. Garfall, A. L. et al. Safety and efficacy of anti-CD19 chimeric antigen receptor (CAR)-modified autologous T cells (CTL019) in advanced multiple myeloma. J. Clin. Oncol. 33 (Suppl.), Abstr. 8517 (2015).

    Google Scholar 

  228. Ramos, C. A. et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J. Clin. Invest. 126, 2588–2596 (2016).

    PubMed  PubMed Central  Google Scholar 

  229. Wang, C.-M. et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin's lymphoma: an open-label phase 1 trial. Lancet 386, S12 (2015).

    Google Scholar 

  230. Guo, B. et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J. Cell. Immunother. 2, 28–35 (2016).

    Google Scholar 

  231. Wang, Q. S. et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23, 184–191 (2015).

    CAS  PubMed  Google Scholar 

  232. Feng, K. et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 59, 468–479 (2016).

    CAS  PubMed  Google Scholar 

  233. Khattab, M. H. et al. Antiangiogenic therapies and extracranial metastasis in glioblastoma: a case report and review of the literature. Case Rep. Oncol. Med. 2015, 431819 (2015).

    PubMed  PubMed Central  Google Scholar 

  234. Slovin, S. F. et al. Targeting castration resistant prostate cancer (CRPC) with autologous PSMA-directed CAR+ T cells. J. Clin. Oncol. 30 (Suppl.), Abstr. TPS4700 (2012).

    Google Scholar 

  235. Lu, Y.-C. et al. A phase I study of an HLA-DPB1*0401-restricted T cell receptor targeting MAGE-A3 for patients with metastatic cancers. J. Immunother. Cancer 3, 158–P158 (2015).

    Google Scholar 

  236. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    CAS  PubMed  Google Scholar 

  237. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    CAS  PubMed  Google Scholar 

  238. Chodon, T. et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 20, 2457–2465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Regan, C. et al. T-cell therapy in metastatic melanoma: TIL 1383I TCR transduced T cells after infusion and activity in vivo. J. Clin. Oncol. 30 (Suppl.), Abstr. 3043 (2015).

    Google Scholar 

Download references

Acknowledgements

A.D.F. is supported by National Institutes of Health (NIH) grant 5T32HL007775-22; B.L.L. is supported by NIH grants 1RO1CA165206 and P30-CA016520-35. C.H.J. is supported by NIH grants 1RO1CA165206 and 5R01CA120409, by the Leukemia and Lymphoma Society and the Parker Foundation. The authors would like to acknowledge research assistance from K. Lamontagne, and the inspiration and support of their patients and their professional colleagues.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew D. Fesnak or Bruce L. Levine.

Ethics declarations

Competing interests

The University of Pennsylvania has entered into a partnership with Novartis for the development of chimeric antigen receptors. This partnership is managed in accordance with the University of Pennsylvania's conflict of interest policy. The authors are in compliance with this policy. B.L.L. and C.H.J.

PowerPoint slides

Glossary

B cell aplasia

The complete in vivo absence of B cells.

Response rates

Determinants of whether cancer patients progress, stay the same or improve following therapy.

Autologous

From the same organism.

Plasma cells

B cell derivatives that produce immunoglobulin and are generally CD38+CD138+.

Cytokine release syndrome

(CRS). A serious and in some cases potentially life-threatening toxicity that has been observed after administration of natural and bispecific antibodies and, more recently, following adoptive T cell therapies for cancer. CRS is associated with elevated circulating levels of several cytokines including interleukin-6 (IL-6) and interferon-γ (IFNγ).

Minimal residual disease

Small amount of disease remaining, typically after treatment.

Immune privileged sites

Body sites that resist immune infiltration and activation.

Immune activation threshold

The sum of minimum signals necessary for immune cell activation; specifically for T cell activation, effector function and proliferation.

Lymphodepletive preconditioning

Treatment regimen, usually chemotherapeutic, that results in lymphopenia and disruption in homeostasis resulting in the in vivo production of lymphocyte growth factors that can assist with engraftment following adoptive cellular immunotherapy.

Neoantigens

Tumour-specific antigens that have not previously been seen by the immune system.

Central tolerance

Mechanism for developing lymphocytes in the thymus and bone marrow to be rendered non-reactive to self antigens.

Antibody-dependent, cell-mediated cytotoxicity

(ADCC). Lysis of a target cell bound by antibodies, which is mediated by an immune cell binding to the Fc portion of the antibodies.

Graft-versus-host disease

(GVHD). Immune reaction of a donor graft containing immune cells against the recipient host that is a by-product of a mismatch in human leukocyte antigens (HLAs). GVHD is a major cause of morbidity following allogeneic haematopoietic stem cell transplantation.

Allogeneic

Genetically distinct but from the same species.

Immune checkpoints

System of immune suppression.

Primary signal

The antigen-specific signal delivered to a T cell through the T cell receptor, which is complemented by co-stimulatory signals to achieve full-function T cell activation and effector function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fesnak, A., June, C. & Levine, B. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16, 566–581 (2016). https://doi.org/10.1038/nrc.2016.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.97

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research